cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336737 Number of factorizations of n whose factors have pairwise intersecting prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 7, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 6, 3, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

First differs from A327400 at a(72) = 9, A327400(72) = 10.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The a(n) factorizations for n = 2, 4, 12, 24, 30, 36, 60:
  (2)  (4)    (12)     (24)       (30)     (36)       (60)
       (2*2)  (2*6)    (2*12)     (5*6)    (4*9)      (2*30)
              (2*2*3)  (2*2*6)    (2*15)   (6*6)      (3*20)
                       (2*2*2*3)  (3*10)   (2*18)     (5*12)
                                  (2*3*5)  (3*12)     (6*10)
                                           (2*3*6)    (2*5*6)
                                           (2*2*3*3)  (2*2*15)
                                                      (2*3*10)
                                                      (2*2*3*5)
		

Crossrefs

A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336736 counts factorizations with disjoint signatures.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]=={}&]&]],{n,100}]