A336737 Number of factorizations of n whose factors have pairwise intersecting prime signatures.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 7, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 6, 3, 2, 1, 9, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 4, 12, 24, 30, 36, 60: (2) (4) (12) (24) (30) (36) (60) (2*2) (2*6) (2*12) (5*6) (4*9) (2*30) (2*2*3) (2*2*6) (2*15) (6*6) (3*20) (2*2*2*3) (3*10) (2*18) (5*12) (2*3*5) (3*12) (6*10) (2*3*6) (2*5*6) (2*2*3*3) (2*2*15) (2*3*10) (2*2*3*5)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]=={}&]&]],{n,100}]
Comments