cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337694 Numbers with no two relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2020

Keywords

Comments

First differs from A305078 in having 1 and lacking 195.
First differs from A305103 in having 1 and 169 and lacking 195.
First differs from A328336 in lacking 897, with prime indices (2,6,9).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions in which no two parts are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}      37: {12}     79: {22}      121: {5,5}
   3: {2}     39: {2,6}    81: {2,2,2,2} 125: {3,3,3}
   5: {3}     41: {13}     83: {23}      127: {31}
   7: {4}     43: {14}     87: {2,10}    129: {2,14}
   9: {2,2}   47: {15}     89: {24}      131: {32}
  11: {5}     49: {4,4}    91: {4,6}     133: {4,8}
  13: {6}     53: {16}     97: {25}      137: {33}
  17: {7}     57: {2,8}   101: {26}      139: {34}
  19: {8}     59: {17}    103: {27}      147: {2,4,4}
  21: {2,4}   61: {18}    107: {28}      149: {35}
  23: {9}     63: {2,2,4} 109: {29}      151: {36}
  25: {3,3}   65: {3,6}   111: {2,12}    157: {37}
  27: {2,2,2} 67: {19}    113: {30}      159: {2,16}
  29: {10}    71: {20}    115: {3,9}     163: {38}
  31: {11}    73: {21}    117: {2,2,6}   167: {39}
		

Crossrefs

A200976 and A328673 count these partitions.
A302696 and A302569 are pairwise coprime instead of pairwise non-coprime.
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.

Programs

  • Maple
    filter:= proc(n) local F,i,j,np;
      if n::even and n>2 then return false fi;
      F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
      np:= nops(F);
      for i from 1 to np-1 do
        for j from i+1 to np do
          if igcd(F[i],F[j])=1 then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 06 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]

A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
This is a ranking sequence for pairwise non-coprime compositions.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()          138: (4,2,2)       546: (4,4,2)
       2: (2)         160: (2,6)         552: (4,2,4)
       4: (3)         162: (2,4,2)       554: (4,2,2,2)
       8: (4)         168: (2,2,4)       640: (2,8)
      10: (2,2)       170: (2,2,2,2)     642: (2,6,2)
      16: (5)         256: (9)           648: (2,4,4)
      32: (6)         260: (6,3)         650: (2,4,2,2)
      34: (4,2)       288: (3,6)         672: (2,2,6)
      36: (3,3)       292: (3,3,3)       674: (2,2,4,2)
      40: (2,4)       512: (10)          680: (2,2,2,4)
      42: (2,2,2)     514: (8,2)         682: (2,2,2,2,2)
      64: (7)         520: (6,4)        1024: (11)
     128: (8)         522: (6,2,2)      2048: (12)
     130: (6,2)       528: (5,5)        2050: (10,2)
     136: (4,4)       544: (4,6)        2052: (9,3)
		

Crossrefs

A337604 counts these compositions of length 3.
A337667 counts these compositions.
A337694 is the version for Heinz numbers of partitions.
A337696 is the strict case.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-coprime partitions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A291166 appears to rank relatively prime compositions.
- A326674 is greatest common divisor.
- A333219 is Heinz number.
- A333227 ranks coprime (Mathematica definition) compositions.
- A333228 ranks compositions with distinct parts coprime.
- A335235 ranks singleton or coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]

A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Number of pairwise non-coprime strict compositions of n.

Examples

			The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
  2  3  4  5  6   7  8   9   A   B  C    D  E    F
              24     26  36  28     2A      2C   3C
              42     62  63  46     39      4A   5A
                             64     48      68   69
                             82     84      86   96
                                    93      A4   A5
                                    A2      C2   C3
                                    246     248
                                    264     284
                                    426     428
                                    462     482
                                    624     824
                                    642     842
		

Crossrefs

A318717 is the unordered version.
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A337667 is the non-strict version, ranked by A337666.
A337696 ranks these compositions.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 are the unordered version.
A233564 ranks strict compositions.
A318749 is the version for factorizations, with non-strict version A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]

A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The a(n) factorizations for n = 36, 360, 720, 192, 288:
  (36)     (360)    (720)     (192)      (288)
  (6*6)    (5*72)   (8*90)    (3*64)     (8*36)
  (2*2*9)  (8*45)   (9*80)    (4*48)     (9*32)
  (3*3*4)  (9*40)   (10*72)   (6*32)     (16*18)
           (10*36)  (16*45)   (12*16)    (2*144)
           (5*8*9)  (5*144)   (3*8*8)    (6*6*8)
                    (5*9*16)  (4*6*8)    (2*2*72)
                    (8*9*10)  (3*4*16)   (2*9*16)
                              (3*4*4*4)  (3*3*32)
                                         (2*2*8*9)
                                         (3*3*4*8)
                                         (2*2*2*36)
                                         (2*2*2*2*2*9)
		

Crossrefs

A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336737 counts factorizations with intersecting signatures.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}]

A337696 Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()        512: (10)       2304: (3,9)
       2: (2)       514: (8,2)      2560: (2,10)
       4: (3)       520: (6,4)      2568: (2,6,4)
       8: (4)       544: (4,6)      2592: (2,4,6)
      16: (5)       640: (2,8)      4096: (13)
      32: (6)      1024: (11)       8192: (14)
      34: (4,2)    2048: (12)       8194: (12,2)
      40: (2,4)    2050: (10,2)     8200: (10,4)
      64: (7)      2052: (9,3)      8224: (8,6)
     128: (8)      2056: (8,4)      8226: (8,4,2)
     130: (6,2)    2082: (6,4,2)    8232: (8,2,4)
     160: (2,6)    2088: (6,2,4)    8320: (6,8)
     256: (9)      2176: (4,8)      8704: (4,10)
     260: (6,3)    2178: (4,6,2)    8706: (4,8,2)
     288: (3,6)    2208: (4,2,6)    8832: (4,2,8)
		

Crossrefs

A318719 gives the Heinz numbers of the unordered version, with non-strict version A337694.
A337667 counts the non-strict version.
A337983 counts these compositions, with unordered version A318717.
A051185 counts intersecting set-systems, with spanning case A305843.
A200976 and A328673 count the unordered non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case A319786.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A333219 is Heinz number.
- A333227 ranks pairwise coprime compositions, or A335235 if singletons are considered coprime.
- A333228 ranks compositions whose distinct parts are pairwise coprime.
- A335236 ranks compositions neither a singleton nor pairwise coprime.
- A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
- A337666 ranks the non-strict version.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]

Formula

Intersection of A337666 and A233564.
Showing 1-5 of 5 results.