A336745 Numbers m that divide the product phi(m) * sigma(m) * tau(m), where phi is the Euler totient function (A000010), sigma is the sum of divisors function (A000203) and tau is the number of divisors function (A000005).
1, 2, 6, 8, 9, 12, 18, 24, 28, 32, 36, 40, 54, 72, 80, 84, 96, 108, 117, 120, 128, 135, 144, 162, 196, 200, 216, 224, 234, 240, 243, 252, 270, 288, 324, 360, 384, 400, 405, 448, 468, 486, 496, 512, 540, 576, 588, 600, 625, 640, 648, 672, 675, 720, 756, 768, 775, 810, 819
Offset: 1
Keywords
Examples
For 24, phi(24) = 8, sigma(24) = 60 and tau(24) = 8, then 8*60*8 / 24 = 160, hence 24 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): filter:= m -> irem(tau(m)*phi(m)*sigma(m), m) =0: select(filter,[$1..850]);
-
Mathematica
Select[Range[1000], Divisible[Times @@ DivisorSigma[{0, 1}, #] * EulerPhi[#], #] &] (* Amiram Eldar, Aug 02 2020 *)
-
PARI
isok(m) = !(eulerphi(m)*sigma(m)*numdiv(m) % m); \\ Michel Marcus, Aug 05 2020
Comments