A336754 Perimeters in increasing order of integer-sided triangles whose sides a < b < c are in arithmetic progression.
9, 12, 15, 15, 18, 18, 21, 21, 21, 24, 24, 24, 27, 27, 27, 27, 30, 30, 30, 30, 33, 33, 33, 33, 33, 36, 36, 36, 36, 36, 39, 39, 39, 39, 39, 39, 42, 42, 42, 42, 42, 42, 45, 45, 45, 45, 45, 45, 45, 48, 48, 48, 48, 48, 48, 48, 51, 51, 51, 51, 51, 51, 51, 51
Offset: 1
Keywords
Examples
Perimeter = 9 only for the smallest triangle (2, 3, 4). Perimeter = 12 only for Pythagorean triple (3, 4, 5). Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
References
- V. Lespinard and R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
for b from 3 to 30 do for a from b-floor((b-1)/2) to b-1 do c := 2*b - a; print(a+b+c); end do; end do;
-
Mathematica
A336754[n_] := 3*Ceiling[2*Sqrt[n+Round[Sqrt[n]]]]; Array[A336754, 100] (* or *) Flatten[Array[ConstantArray[3*#, Floor[(#-1)/2]] &, 19, 3]] (* Paolo Xausa, Feb 29 2024 *)
Comments