cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A336750 Triples for integer-sided triangles whose sides a < b < c are in arithmetic progression.

Original entry on oeis.org

2, 3, 4, 3, 4, 5, 3, 5, 7, 4, 5, 6, 4, 6, 8, 5, 6, 7, 4, 7, 10, 5, 7, 9, 6, 7, 8, 5, 8, 11, 6, 8, 10, 7, 8, 9, 5, 9, 13, 6, 9, 12, 7, 9, 11, 8, 9, 10, 6, 10, 14, 7, 10, 13, 8, 10, 12, 9, 10, 11, 6, 11, 16, 7, 11, 15, 8, 11, 14, 9, 11, 13, 10, 11, 12, 7, 12, 17, 8, 12, 16
Offset: 1

Views

Author

Bernard Schott, Aug 03 2020

Keywords

Comments

The triples are displayed in increasing order of perimeter, and if perimeters coincide then by increasing order of the smallest side, hence, each triple (a, b, c) is in increasing order.
Equivalently: triples of integer-sided triangles such that b = (a+c)/2 with a < c.
As the perimeter of these triangles = 3*b, the triples are also displayed in increasing order of middle side.
When a < b < c are in arithmetic progression with b - a = c - b = x, then 1 <= x <= floor((b-1)/2), hence, there exist for each side b >= 3, floor((b-1)/2) = A004526(b) triangles whose sides a < b < c are in arithmetic progression.
The only right integer-sided triangles such that a < b < c are in arithmetic progression correspond to the Pythagorean triples (3k, 4k, 5k) with k > 0.
There do not exist triangles whose sides a < b < c and angles A < B < C are both in arithmetic progression.
Three geometrical properties about these triangles, even if they are not integer-sided:
1) tan(A/2) * tan(C/2) = 1/3,
2) r = h_b/3, where r is the inradius and h_b the length of the altitude through B,
3) The line (IG) is parallel to side (AC), where I is the incenter and G is the centroid of the triangle.

Examples

			The smallest such triangle is (2, 3, 4).
The only triangle with perimeter = 12 corresponds to the Pythagorean triple: (3, 4, 5).
There exist two triangles with perimeter = 15 corresponding to triples (3, 5, 7) and (4, 5, 6).
There exist also two triangles with perimeter = 18 corresponding to triples (4, 6, 8) and (5, 6, 7).
The table begins:
  2, 3, 4;
  3, 4, 5;
  3, 5, 7;
  4, 5, 6;
  4, 6, 8;
  5, 6, 7;
  4, 7, 10;
  5, 7, 9;
  6, 7, 8;
		

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-288 p. 120, André Desvigne.

Crossrefs

Cf. A336751 (smallest side), A307136 (middle side), A336753 (largest side), A336754 (perimeter), A024164 (number of triangles with perimeter = n), A336755 (primitive triples), A336756 (perimeter of primitive triangles), A336757 (number of primitive triangles with perimeter = n).
Cf. A004526 (number of triangles with middle side = b).
Cf. A103605 (similar, with Pythagorean triples).
Cf. A335893 (similar, with A, B, C in arithmetic progression).

Programs

  • Maple
    for b from 3 to 20 do
    for a from b-floor((b-1)/2) to b-1 do
    c := 2*b - a;
    print(a,b,c);
    end do;
    end do;
  • Mathematica
    Block[{nn = 12, a, b, c}, Reap[Do[Do[Sow@ {a, b, 2 b - a}, {a, b - Floor[(b - 1)/2], b - 1}], {b, 3, nn}]][[-1, 1]] ] // Flatten (* Michael De Vlieger, Oct 15 2020 *)
  • PARI
    tabf(nn) = {for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); print(a, " ", b, " ", c);););} \\ Michel Marcus, Sep 08 2020

Formula

T(n,1) = A336751(n); T(n,2) = A307136(n); T(n,3) = A336753(n).
A336754(n) = T(n,1) + T(n,2) + T(n,3).

A336751 Smallest side of integer-sided triangles whose sides a < b < c are in arithmetic progression.

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 4, 5, 6, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 15, 9, 10, 11, 12, 13, 14, 15, 16, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14
Offset: 1

Views

Author

Bernard Schott, Aug 15 2020

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in increasing order of perimeter = 3*b, and if perimeter coincide, then by increasing order of the smallest side. This sequence lists the a's.
Equivalently: smallest side of integer-sided triangles such that b = (a+c)/2 with a < c.
a >= 2 and each side a appears a-1 times but not consecutively.
For each a = 3*k, k>=1, there exists exactly one right triangle (3*k, 4*k, 5*k) whose sides a < b < c are in arithmetic progression.
This sequence is not increasing a(6) = 5 for triangle with perimeter = 18 and a(7) = 4 for triangle with perimeter = 21. The smallest side is not an increasing function of the perimeter of these triangles.
For the corresponding triples and miscellaneous properties and references, see A336750.

Examples

			a = 2 for only the smallest triangle (2, 3, 4).
a = 3 for Pythagorean triple (3, 4, 5) and also for the second triangle (3, 5, 7).
		

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.

Crossrefs

Cf. A336750 (triples), this sequence (smallest side), A307136 (middle side), A336753 (largest side), A336754 (perimeter).
Cf. A335894 (smallest side when triangles angles are in arithmetic progression).

Programs

  • Maple
    for b from 3 to 30 do
    for a from b-floor((b-1)/2) to b-1 do
    c := 2*b - a;
    print(a);
    end do;
    end do;
  • Mathematica
    Flatten[Array[Range[#-Floor[(#-1)/2], #-1] &, 20, 3]] (* Paolo Xausa, Feb 28 2024 *)

Formula

a(n) = A336750(n, 1).

A024164 Number of integer-sided triangles with sides a,b,c, a

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 5, 0, 0, 5, 0, 0, 6, 0, 0, 6, 0, 0, 7, 0, 0, 7, 0, 0, 8, 0, 0, 8, 0, 0, 9, 0, 0, 9, 0, 0, 10, 0, 0, 10, 0, 0, 11, 0, 0, 11, 0, 0, 12, 0, 0, 12, 0, 0, 13, 0, 0, 13, 0, 0, 14, 0, 0, 14, 0, 0, 15, 0, 0, 15, 0, 0, 16, 0, 0, 16
Offset: 1

Views

Author

Keywords

Comments

From Bernard Schott, Oct 10 2020: (Start)
Equivalently: number of integer-sided triangles whose sides a < b < c are in arithmetic progression with perimeter n.
Equivalently: number of integer-sided triangles such that b = (a+c)/2 with a < c and perimeter n.
All the perimeters are multiple of 3 because each perimeter = 3 * middle side b.
For each perimeter n = 12*k with k>0, there exists one and only one such right integer triangle whose triple is (3k, 4k, 5k).
For the corresponding primitive triples and miscellaneous properties and references, see A336750. (End)

Examples

			a(9) = 1 for the smallest such triangle (2, 3, 4).
a(12) = 1 for Pythagorean triple (3, 4, 5).
a(15) = 2 for the two triples (3, 5, 7) and (4, 5, 6).
		

Crossrefs

Cf. A336750 (triples), A336751 (smallest side), A307136 (middle side), A336753 (largest side), A336754 (perimeter), this sequence (number of triangles whose perimeter = n), A336755 (primitive triples), A336756 (primitive perimeters), A336757 (number of primitive triangles with perimeter = n).
Cf. A005044 (number of integer-sided triangles with perimeter = n).

Programs

  • Mathematica
    A024164[n_] := If[Mod[n, 3] == 0, Floor[(n - 3)/6], 0]; Array[A024164, 100] (* Wesley Ivan Hurt, Nov 01 2020 *)
    LinearRecurrence[{0,0,1,0,0,1,0,0,-1},{0,0,0,0,0,0,0,0,1},120] (* Harvey P. Dale, Jun 03 2021 *)

Formula

If n = 3*k, then a(n) = floor((n-3)/6) = A004526((n-3)/3), otherwise, a(3k+1) = a(3k+2) = 0. - Bernard Schott, Oct 10 2020
From Wesley Ivan Hurt, Nov 01 2020: (Start)
G.f.: x^9/((x^3 - 1)^2*(x^3 + 1)).
a(n) = a(n-3) + a(n-6) - a(n-9).
a(n) = (1 - ceiling(n/3) + floor(n/3)) * floor((n-3)/6). (End)
E.g.f.: (18 + (x - 6)*cosh(x) + (x - 3)*sinh(x) - exp(-x/2)*((9 + 3*exp(x) + x)*cos(sqrt(3)*x/2) + sqrt(3)*x*sin(sqrt(3)*x/2)))/18. - Stefano Spezia, Feb 29 2024

A336753 Largest side of integer-sided triangles whose sides a < b < c are in arithmetic progression.

Original entry on oeis.org

4, 5, 7, 6, 8, 7, 10, 9, 8, 11, 10, 9, 13, 12, 11, 10, 14, 13, 12, 11, 16, 15, 14, 13, 12, 17, 16, 15, 14, 13, 19, 18, 17, 16, 15, 14, 20, 19, 18, 17, 16, 15, 22, 21, 20, 19, 18, 17, 16, 23, 22, 21, 20, 19, 18, 17, 25, 24, 23, 22, 21, 20, 19, 18, 26, 25, 24, 23, 22, 21, 20, 19
Offset: 1

Views

Author

Bernard Schott, Aug 25 2020

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in increasing order of perimeter = 3*b, and if perimeters coincide, then by increasing order of the smallest side. This sequence lists the c's.
Equivalently: largest side of integer-sided triangles such that b = (a+c)/2 with a < c.
c >= 4 and each largest side c appears floor((c-1)/3) = A002264(c-1) times but not consecutively.
For each c = 5*k, k>=1, there exists exactly one right triangle (3*k, 4*k, 5*k) whose sides a < b < c are in arithmetic progression.
For the corresponding primitive triples and miscellaneous properties and references, see A336750.

Examples

			c = 4 only for the smallest triangle (2, 3, 4).
c = 5 only for Pythagorean triple (3, 4, 5).
c = 6 only for triple (4, 5, 6).
c = 7 for the two triples (3, 5, 7) and (5, 6, 7).
		

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.

Crossrefs

Cf. A336750 (triples), A336751 (smallest side), A307136 (middle side), this sequence (largest side), A336754 (perimeter).
Cf. A335896 (largest side when triangles angles are in arithmetic progression).

Programs

  • Maple
    for b from 3 to 30 do
    for a from b-floor((b-1)/2) to b-1 do
    c := 2*b - a;
    print(c);
    end do;
    end do;
  • Mathematica
    Flatten[Array[2*#-Range[#-Floor[(#-1)/2], #-1] &, 20, 3]] (* Paolo Xausa, Feb 28 2024 *)

Formula

a(n) = A336750(n, 3).

A336756 Perimeters in increasing order of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression.

Original entry on oeis.org

9, 12, 15, 15, 18, 21, 21, 21, 24, 24, 27, 27, 27, 30, 30, 33, 33, 33, 33, 33, 36, 36, 39, 39, 39, 39, 39, 39, 42, 42, 42, 45, 45, 45, 45, 48, 48, 48, 48, 51, 51, 51, 51, 51, 51, 51, 51, 54, 54, 54, 57, 57, 57, 57, 57, 57, 57, 57, 57, 60, 60, 60, 60, 63, 63, 63, 63, 63, 63
Offset: 1

Views

Author

Bernard Schott, Sep 16 2020

Keywords

Comments

Equivalently: perimeters of primitive integer-sided triangles such that b = (a+c)/2 with a < c.
As perimeter = 3 * middle side, these perimeters p are all multiples of 3 and each term p appears consecutively A023022(p/3) = phi(p/3)/2 times for p >= 9.
Remark, when the middle side is prime, then the number of primitive triangles with a perimeter p = 3*b equals phi(p/3)/2 = (b-1)/2 = (p-3)/6 and in this case, all the triangles are primitive (see A336754).
For the corresponding primitive triples, miscellaneous properties, and references, see A336750.

Examples

			Perimeter = 9 only for the smallest triangle (2, 3, 4).
Perimeter = 12 only for the Pythagorean triple (3, 4, 5).
Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
There only exists one primitive triangle with perimeter = 18 whose triple is (5, 6, 7), because (4, 6, 8) is not a primitive triple.
		

Crossrefs

Cf. A336754 (perimeters, primitive or not), A336755 (primitive triples), this sequence (perimeters of primitive triangles), A336757 (number of such primitive triangles whose perimeter = n).
Cf. A023022.

Programs

  • Maple
    for b from 3 to 21 do
    for a from b-floor((b-1)/2) to b -1 do
    c := 2*b - a;
    if gcd(a,b)=1 and gcd(b,c)=1 then print(a+b+c); end if;
    end do;
    end do;
  • Mathematica
    Flatten[Array[ConstantArray[3*#, EulerPhi[#]/2] &, 20, 3]] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    lista(nn) = {my(list=List()); for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); if (gcd([a, b, c]) == 1, listput(list, a+b+c);););); Vec(list);} \\ Michel Marcus, Sep 16 2020

A339860 Perimeter of primitive integer-sided triangles whose sides a < b < c form a geometric progression.

Original entry on oeis.org

19, 37, 61, 91, 109, 129, 127, 169, 193, 219, 247, 217, 273, 271, 301, 367, 403, 331, 399, 397, 433, 471, 511, 553, 597, 469, 637, 733, 547, 589, 633, 679, 727, 777, 829, 883, 631, 723, 823, 721, 769, 871, 1039, 1099, 817, 921, 1033, 1153, 1281, 919, 973, 1029, 1087
Offset: 1

Views

Author

Bernard Schott, Jan 08 2021

Keywords

Comments

The triples of sides (a, b, c) with a < b < c are in increasing lexicographic order.
These perimeters are of the form r^2 + r*s + s^2, r < s, gcd(r, s) = 1 and q = r/s (A034017), so they are all odd but not in increasing order. For example, a(6) = 129 for triple (25, 40, 64) while a(7) = 127 for triple (36, 42, 49).
For the corresponding primitive triples and miscellaneous properties, see A339859.

Examples

			a(1) = 19 = 4+6+9 for the smallest such triangle (4, 6, 9) with 4 * 9 = 6^2 and a ratio q = 3/2.
a(2) = 37 = 9+12+16 for the triple (9, 12, 16) with 9 * 16 = 12^2 and a ratio q = 4/3.
		

Crossrefs

Cf. A339856 (triples), A339857 (smallest side), A339858 (middle side), A339859 (largest side), this sequence (perimeter).
Cf. A336754 (similar for sides in arithmetic progression).
Cf. A335897 (similar for angles in arithmetic progression).
Subsequence of A034017.

Programs

  • Maple
    for a from 1 to 300 do
    for b from a+1 to floor((1+sqrt(5))/2 *a) do
    for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c;
    if k=b^2 and igcd(a, b, c)=1 then print(a+b+c); end if;
    end do;
    end do;
    end do;
  • PARI
    lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(a+b+c, ", ")); ); ); ); } \\ Michel Marcus, Jan 08 2021

Formula

a(n) = A339856(n, 1) + A339856(n, 2) + A339856(n, 3).
Showing 1-6 of 6 results.