cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336756 Perimeters in increasing order of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression.

Original entry on oeis.org

9, 12, 15, 15, 18, 21, 21, 21, 24, 24, 27, 27, 27, 30, 30, 33, 33, 33, 33, 33, 36, 36, 39, 39, 39, 39, 39, 39, 42, 42, 42, 45, 45, 45, 45, 48, 48, 48, 48, 51, 51, 51, 51, 51, 51, 51, 51, 54, 54, 54, 57, 57, 57, 57, 57, 57, 57, 57, 57, 60, 60, 60, 60, 63, 63, 63, 63, 63, 63
Offset: 1

Views

Author

Bernard Schott, Sep 16 2020

Keywords

Comments

Equivalently: perimeters of primitive integer-sided triangles such that b = (a+c)/2 with a < c.
As perimeter = 3 * middle side, these perimeters p are all multiples of 3 and each term p appears consecutively A023022(p/3) = phi(p/3)/2 times for p >= 9.
Remark, when the middle side is prime, then the number of primitive triangles with a perimeter p = 3*b equals phi(p/3)/2 = (b-1)/2 = (p-3)/6 and in this case, all the triangles are primitive (see A336754).
For the corresponding primitive triples, miscellaneous properties, and references, see A336750.

Examples

			Perimeter = 9 only for the smallest triangle (2, 3, 4).
Perimeter = 12 only for the Pythagorean triple (3, 4, 5).
Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
There only exists one primitive triangle with perimeter = 18 whose triple is (5, 6, 7), because (4, 6, 8) is not a primitive triple.
		

Crossrefs

Cf. A336754 (perimeters, primitive or not), A336755 (primitive triples), this sequence (perimeters of primitive triangles), A336757 (number of such primitive triangles whose perimeter = n).
Cf. A023022.

Programs

  • Maple
    for b from 3 to 21 do
    for a from b-floor((b-1)/2) to b -1 do
    c := 2*b - a;
    if gcd(a,b)=1 and gcd(b,c)=1 then print(a+b+c); end if;
    end do;
    end do;
  • Mathematica
    Flatten[Array[ConstantArray[3*#, EulerPhi[#]/2] &, 20, 3]] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    lista(nn) = {my(list=List()); for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); if (gcd([a, b, c]) == 1, listput(list, a+b+c);););); Vec(list);} \\ Michel Marcus, Sep 16 2020