cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336512 Total sum of the left-to-right minima in all compositions of n.

Original entry on oeis.org

0, 1, 3, 8, 17, 38, 78, 162, 330, 672, 1355, 2736, 5503, 11058, 22191, 44507, 89198, 178697, 357852, 716440, 1434041, 2869935, 5742801, 11490298, 22988084, 45988166, 91995547, 184021931, 368093352, 736266262, 1472660452, 2945526806, 5891385159, 11783304479
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2020

Keywords

Examples

			a(4) = 1 + 1 + 1 + 2 + 1 + 2 + 1 + 3 + 1 + 4 = 17: (1)111, (1)12, (1)21, (2)(1)1, (2)2, (1)3, (3)(1), (4).
		

Crossrefs

Cf. A001563 (the same for permutations of [n]), A336484, A336511, A336516, A336770.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> [0,
          `if`(j b(n, n+1)[2]:
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {0,
         If[j < m, j*p[[1]], 0]} + p][b[n - j, Min[m, j]]], {j, 1, n}]];
    a[n_] := b[n, n + 1][[2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)

A336718 Total number of left-to-right maxima in all compositions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 4, 4, 7, 18, 21, 32, 46, 107, 121, 193, 257, 379, 728, 900, 1299, 1806, 2529, 3360, 6182, 7387, 10807, 14385, 20217, 26207, 36450, 58194, 72887, 101130, 135379, 183178, 240796, 323307, 417625, 649959, 797623, 1096645, 1426108, 1931340, 2470541
Offset: 0

Views

Author

Alois P. Heinz, Aug 01 2020

Keywords

Comments

Also total number of left-to-right minima in all compositions of n into distinct parts.

Examples

			a(6) = 18 = 3+2+2+2+1+1+2+1+2+1+1: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21, (2)(4), (4)2, (1)(5), (5)1, (6).
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;
          `if`(n<2, n, (2*n-1)*g(n-1)-(n-1)^2*g(n-2))
        end:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..50);
  • Mathematica
    g[n_] := g[n] = If[n < 2, n, (2 n - 1) g[n - 1] - (n - 1)^2 g[n - 2]];
    b[n_, i_, p_] := b[n, i, p] = If[i (i + 1)/2 < n, 0, If[n == 0, g[p], b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p + 1]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000254(k) * A008289(n,k).

A336771 Total sum of the left-to-right maxima in all compositions of n into distinct parts.

Original entry on oeis.org

0, 1, 2, 8, 11, 22, 53, 75, 123, 193, 418, 538, 894, 1268, 1950, 3567, 4799, 7143, 10355, 14968, 20701, 36398, 46420, 69071, 94972, 136385, 182522, 259104, 402405, 527090, 741569, 1015491, 1397661, 1880541, 2567202, 3392612, 5153156, 6553844, 9088372, 12040797
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2020

Keywords

Examples

			a(6) = 53 = 6+4+5+5+3+3+6+4+6+5+6: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21, (2)(4), (4)2, (1)(5), (5)1, (6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k, m) option remember; `if`(i
          (2*i-k+1)*k/2, 0, `if`(n=0, [1, 0], b(n, i-1, k, m)+
          (p-> p+[0, p[1]*i/(m+1-k)])(b(n-i, min(n-i, i-1), k-1, m))))
        end:
    a:= n-> add(b(n$2, k$2)[2]*k!, k=1..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, k_, m_] := b[n, i, k, m] = If[i < k || n >
        (2*i - k + 1)*k/2, {0, 0}, If[n == 0, {1, 0}, b[n, i - 1, k, m] +
        Function[p, p+{0, p[[1]]*i/(m+1-k)}][b[n-i, Min[n-i, i-1], k-1, m]]]];
    a[n_] := Sum[b[n, n, k, k][[2]]*k!, {k, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)
Showing 1-3 of 3 results.