A336775 a(n) is the largest power of n such that all numbers n^k <= a(n), k=1,..,A336774(n)-1 can be exactly represented as single precision 32-bit floating point numbers according to the IEEE 754 standard.
170141183460469231731687303715884105728, 14348907, 85070591730234615865843651857942052864, 9765625, 470184984576, 5764801, 85070591730234615865843651857942052864, 4782969, 10000000000, 1771561, 15407021574586368, 4826809, 1475789056, 11390625, 21267647932558653966460912964485513216
Offset: 2
Examples
a(3) = 14348907 = 3^15, because the next power 3^16 = 43046721 cannot be exactly represented as a binary32 floating point number, but only rounded to 43046720.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 2..16384
Formula
a(n) = n^(A336774(n)-1).
Comments