A336797 Numbers, not divisible by 3, whose squares have exactly 4 nonzero digits in base 3.
7, 14, 16, 17, 26, 35, 47, 68, 350, 3788
Offset: 1
Examples
7^2=49 in base 3 is 1211, so 7 is a term. 14^2=196 in base 3 is 21021, so 14 is a term.
Links
- Alessio Moscariello, On sparse perfect powers, arXiv:2101.10415 [math.NT], 2021. See Question 11 p. 9.
Programs
-
Mathematica
Select[Range[4000], Mod[#, 3] > 0 && Length @ Select[IntegerDigits[#^2, 3], #1 > 0 &] == 4 &] (* Amiram Eldar, Jan 27 2021 *)
-
PARI
isok(n) = (n%3) && #select(x->x, digits(n^2, 3)) == 4;
-
Python
from gmpy2 import isqrt, is_square import itertools N = 1000 powers = [1] a_list = [] while len(powers) < N: powers.append(3 * powers[-1]) def attempt(n): if is_square(n): a_list.append(int(isqrt(n))) for A, B, C in itertools.combinations(powers[1:], 3): for a, b, c in itertools.product([1, 2], repeat=3): attempt(a*A + b*B + c*C + 1) print(sorted(a_list)) # James Rayman, Feb 05 2021
Comments