cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336820 A(n,k) is the n-th number that is a sum of at most k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 3, 5, 5, 0, 1, 2, 3, 8, 8, 6, 0, 1, 2, 3, 4, 9, 9, 7, 0, 1, 2, 3, 4, 16, 10, 10, 8, 0, 1, 2, 3, 4, 5, 17, 16, 13, 9, 0, 1, 2, 3, 4, 5, 32, 18, 17, 16, 10, 0, 1, 2, 3, 4, 5, 6, 33, 19, 24, 17, 11, 0, 1, 2, 3, 4, 5, 6, 64, 34, 32, 27, 18, 12
Offset: 1

Views

Author

Alois P. Heinz, Aug 04 2020

Keywords

Examples

			Square array A(n,k) begins:
   0,  0,  0,  0,  0,  0,   0,   0,   0,  0,  0, ...
   1,  1,  1,  1,  1,  1,   1,   1,   1,  1,  1, ...
   2,  2,  2,  2,  2,  2,   2,   2,   2,  2,  2, ...
   3,  4,  3,  3,  3,  3,   3,   3,   3,  3,  3, ...
   4,  5,  8,  4,  4,  4,   4,   4,   4,  4,  4, ...
   5,  8,  9, 16,  5,  5,   5,   5,   5,  5,  5, ...
   6,  9, 10, 17, 32,  6,   6,   6,   6,  6,  6, ...
   7, 10, 16, 18, 33, 64,   7,   7,   7,  7,  7, ...
   8, 13, 17, 19, 34, 65, 128,   8,   8,  8,  8, ...
   9, 16, 24, 32, 35, 66, 129, 256,   9,  9,  9, ...
  10, 17, 27, 33, 36, 67, 130, 257, 512, 10, 10, ...
		

Crossrefs

A(n+j,n) for j=0-3 give: A001477(n-1), A000027, A000079, A000051.
Cf. A336725.

Programs

  • Maple
    A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
          proc(n, k) option remember; local b; b:=
            proc(x, y) option remember; `if`(x<0 or y<1, {},
              {0, b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})
            end;
            while nops(w(k)) < n do forget(b);
              l(k):= [l(k)[], (nops(l(k))+1)^k];
              w(k):= sort([select(h-> h
    				
  • Mathematica
    b[n_, k_, i_, t_] := b[n, k, i, t] = n == 0 || i > 0 && t > 0 && (b[n, k, i - 1, t] || i^k <= n && b[n - i^k, k, i, t - 1]);
    A[n_, k_] := A[n, k] = Module[{m}, For[m = 1 + If[n == 1, -1, A[n - 1, k]], !b[m, k, m^(1/k) // Floor, k], m++]; m];
    Table[A[n, 1+d-n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, Dec 03 2020, using Alois P. Heinz's code for columns *)

Formula

A(n,k) = n-1 for n <= k+1.