cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336841 Prime-shifted analog of A094471: a(n) = A336845(n) - A003973(n).

Original entry on oeis.org

0, 2, 4, 14, 6, 36, 10, 68, 44, 52, 12, 192, 16, 84, 92, 284, 18, 326, 22, 274, 148, 100, 28, 840, 90, 132, 344, 438, 30, 648, 36, 1094, 176, 148, 212, 1622, 40, 180, 232, 1192, 42, 1032, 46, 520, 802, 228, 52, 3324, 230, 654, 260, 684, 58, 2376, 252, 1896, 316, 244, 60, 3156, 66, 292, 1278, 4010, 332, 1224, 70, 766
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

All terms are even because A003973 and A336845 match parity-wise. Also in the sum formulas, only even terms are summed (only one of which is zero).

Crossrefs

Cf. A336846 [= gcd(a(n), A003973(n))].
Twice the terms of A336854.

Programs

Formula

a(n) = A336845(n) - A003973(n) = (A000005(n)*A003961(n)) - A000203(A003961(n)).
a(n) = A094471(A003961(n)).
a(n) = Sum_{d|n} (A003961(n)-A003961(d)) = Sum_{d|A003961(n)} (A003961(n)-d).
a(n) = 2*A336854(n) = 2*Sum_{d|n} (A048673(n)-A048673(d)).
a(n) = ((A003961(n)+1)*A000005(n)) - 2*A336840(n).
a(n) = 2 * ((A000005(n)*A048673(n)) - A336840(n)).
a(n) = A000005(n) * (A336837(n)/A336839(n)) = A336837(n) * A336856(n).