A336858 Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 5, 9, 1, 1, 7, 21, 31, 1, 1, 9, 37, 89, 121, 1, 1, 11, 57, 183, 393, 515, 1, 1, 13, 81, 321, 897, 1805, 2321, 1, 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1, 1, 17, 141, 761, 3001, 9161, 22149, 41585, 52465, 1, 1, 19, 177, 1079, 4841, 17003, 48313, 112047, 206097, 258563, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 1; 1, 3, 1; 1, 5, 9, 1; 1, 7, 21, 31, 1; 1, 9, 37, 89, 121, 1; 1, 11, 57, 183, 393, 515, 1; 1, 13, 81, 321, 897, 1805, 2321, 1; 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1; ...
Programs
-
Maple
A336858row := proc(n) option remember; local T, k, row; row := Array(0..n, fill=1); if n = 0 then return row fi; T := procname(n-1); for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end: T := (n, k) -> A336858row(n)[k]: seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 06 2020
-
Mathematica
T[, 0] = 1; T[n, n_] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023 *)
Formula
T(n,k) = T(n, k-1) + T(n-1, k) + T(n-1, k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
T(n,k) = D(n,k) - Sum_{m=1..k} b(m-1)*D(n-m, k-m) - Sum_{m=0..k-1} D(n-m, k-m-1), where D(n,k) = A008288(n,k) (square array of Delannoy numbers) and b(n) = A086616(n).
T(n,1) = A005408(n-1) = 2*n - 1 for n >= 1.
T(n,2) = A059993(n-2) = 2*n^2 - 2*n - 3 for n >= 2.
T(n,n-1) = A086616(n-1) for n >= 1.
Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.
Bivariate o.g.f.: (1 - y - x*y*(1 + g(x*y)))/((1 - x*y)*(1 - x - y - x*y)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).
Bivariate o.g.f.: (1 - y - 2*x*y*q(x*y))/((1 - x*y)*(1 - x - y - x*y)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).
T(2*n,n) = A333090(n). - Peter Luschny, Aug 06 2020
Comments