cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336858 Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 9, 1, 1, 7, 21, 31, 1, 1, 9, 37, 89, 121, 1, 1, 11, 57, 183, 393, 515, 1, 1, 13, 81, 321, 897, 1805, 2321, 1, 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1, 1, 17, 141, 761, 3001, 9161, 22149, 41585, 52465, 1, 1, 19, 177, 1079, 4841, 17003, 48313, 112047, 206097, 258563, 1
Offset: 0

Views

Author

Petros Hadjicostas, Aug 05 2020

Keywords

Comments

This is J. M. Bergot's triangular array described in A104858 with the top vertex of the triangle shifted from (1,1) to (0,0).

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   9,   1;
  1,  7,  21,  31,    1;
  1,  9,  37,  89,  121,    1;
  1, 11,  57, 183,  393,  515,    1;
  1, 13,  81, 321,  897, 1805, 2321,     1;
  1, 15, 109, 511, 1729, 4431, 8557, 10879, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A336858row := proc(n) option remember; local T, k, row;
    row := Array(0..n, fill=1);
    if n = 0 then return row fi; T := procname(n-1);
    for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end:
    T := (n, k) -> A336858row(n)[k]:
    seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 06 2020
  • Mathematica
    T[, 0] = 1; T[n, n_] = 1;
    T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023 *)

Formula

T(n,k) = T(n, k-1) + T(n-1, k) + T(n-1, k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
T(n,k) = D(n,k) - Sum_{m=1..k} b(m-1)*D(n-m, k-m) - Sum_{m=0..k-1} D(n-m, k-m-1), where D(n,k) = A008288(n,k) (square array of Delannoy numbers) and b(n) = A086616(n).
T(n,1) = A005408(n-1) = 2*n - 1 for n >= 1.
T(n,2) = A059993(n-2) = 2*n^2 - 2*n - 3 for n >= 2.
T(n,n-1) = A086616(n-1) for n >= 1.
T(n,n-2) = A035011(n-1) = A006318(n-1) - 1 for n >= 2.
Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.
Bivariate o.g.f.: (1 - y - x*y*(1 + g(x*y)))/((1 - x*y)*(1 - x - y - x*y)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).
Bivariate o.g.f.: (1 - y - 2*x*y*q(x*y))/((1 - x*y)*(1 - x - y - x*y)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).
T(2*n,n) = A333090(n). - Peter Luschny, Aug 06 2020