A336862 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h X 2h X 2h where the walk starts at the middle of the box's edge.
4, 12, 4, 40, 14, 4, 118, 54, 14, 4, 358, 208, 56, 14, 4, 936, 826, 224, 56, 14, 4, 2600, 3232, 936, 226, 56, 14, 4, 6212, 12688, 3862, 956, 226, 56, 14, 4, 16068, 48924, 16196, 4026, 958, 226, 56, 14, 4, 34936, 187276, 67346, 17246, 4050, 958, 226, 56, 14, 4
Offset: 1
Examples
T(1,2) = 12. A first step along either edge leading to the corner leaves two possible second steps. A first step to the center of either face can be followed by a second step to three edges or to the center of the box, four steps in all. Thus the total number of 2-step walks is 2*2+2*4 = 12. . The table begins: . 4 12 40 118 358 936 2600 6212 16068 34936 83708 163452 357056... 4 14 54 208 826 3232 12688 48924 187276 705196 2627950 9670620 35231628... 4 14 56 224 936 3862 16196 67346 282676 1180326 4950936 20646098 86165926... 4 14 56 226 956 4026 17246 73588 316456 1358518 5860464 25266192 109288486... 4 14 56 226 958 4050 17478 75288 327778 1425340 6236152 27260378 119641050... 4 14 56 226 958 4052 17506 75600 330362 1444544 6360718 28020896 123963354... 4 14 56 226 958 4052 17508 75632 330766 1448280 6391426 28238732 125405300... 4 14 56 226 958 4052 17508 75634 330802 1448788 6396618 28285548 125766436... 4 14 56 226 958 4052 17508 75634 330804 1448828 6397242 28292536 125835068... 4 14 56 226 958 4052 17508 75634 330804 1448830 6397286 28293288 125844228... 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293336 125845120... 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845172... 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845174...