cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336875 Number of parts, counted without multiplicity, in all compositions of n.

Original entry on oeis.org

0, 1, 2, 6, 13, 30, 66, 144, 308, 655, 1380, 2891, 6024, 12500, 25844, 53274, 109530, 224690, 460033, 940276, 1918979, 3911186, 7962194, 16191875, 32896364, 66776727, 135445212, 274532607, 556086916, 1125727954, 2277650681, 4605981879, 9310120876, 18810538092
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2020

Keywords

Examples

			a(4) = 1 + 2 + 2 + 2 + 1 + 2 + 2 + 1 = 13: (1)111, (1)1(2), (1)(2)1, (2)(1)1, (2)2, (1)(3), (3)(1), (4).
		

Crossrefs

Cf. A000070 (the same for partitions), A001792 (all parts), A097910, A336516.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
          `if`(i<1, 0, add((p-> [0, `if`(j=0, 0, p[1])]+p)(
             b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..38);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
         If[i<1, {0, 0}, Sum[{0, If[j == 0, 0, #[[1]]]}+#&[
         b[n-i*j, i-1, p+j]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]];
    a /@ Range[0, 38] (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)