A336883 a(n) = ((A002144(n) - 1)/2)! (mod A002144(n)) where A002144(n) is the n-th Pythagorean prime.
2, 5, 13, 12, 31, 9, 23, 11, 27, 34, 22, 91, 33, 15, 37, 44, 129, 80, 162, 81, 183, 122, 144, 64, 16, 187, 217, 53, 138, 288, 114, 189, 213, 42, 104, 274, 63, 381, 266, 29, 254, 382, 348, 48, 301, 286, 489, 439, 483, 24, 77, 125, 578, 423, 487, 149, 555, 615, 651, 135, 96, 380, 87, 39, 707
Offset: 1
Keywords
Examples
p(1)=5: (5-2)!=2*3=a(1)*(5-a(1))==1 mod 5. 5=2+3. p(2)=13: (13-2)!=(2*3*4*5*6)*(7*8*9*10*11)=(2*3*4*5*6)*((p-6)*(p-5)*(p-4)*(p-3)*(p-2))==5*(-5)==5*(13-5)=5*8==a(2)*(13-a(2))==1 mod 13. 13=5+8. a(n)=13: b(n)=(k*13+1)/(13-k)=(3*13+1)/(13-3)=4, k=3. p(n)=13+4=17. a(n)=12: b(n)=(k*12+1)/(12-k)=(7*12+1)/(12-7)=17, k=7. p(n)=12+17=29.
Links
- Hiroyuki Hara, Table of n, a(n) for n = 1..4783 [reformatted and restored by _Georg Fischer_, Oct 15 2020]
Programs
-
Mathematica
Map[Mod[((# - 1)/2)!, #] &, Select[4 Range[192] + 1, PrimeQ]] (* Michael De Vlieger, Oct 15 2020 *)
-
PARI
my(v=select(p->p%4==1, primes(100))); apply(x->(((x-1)/2)! % x), v) \\ Michel Marcus, Aug 07 2020
-
Python
n_start=5 n_end=n_start+10000 k = 1 for n in range(n_start, n_end, 4): c=(n-1)//2 r=1 for i in range(2, c+1): r=r*i % n if r==0: break if (n-r)*r % n ==1: print(k, r) k = k + 1 # modified by Georg Fischer, Oct 16 2020
Comments