cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336890 Numbers that eventually reach the fixed point 8208 under "x --> sum of the fourth powers of digits of x".

Original entry on oeis.org

12, 17, 21, 46, 64, 71, 102, 107, 120, 137, 145, 154, 170, 173, 201, 210, 224, 242, 279, 288, 297, 317, 349, 357, 371, 375, 379, 394, 397, 406, 415, 422, 439, 451, 460, 493, 514, 537, 541, 573, 599, 604, 640, 701, 710, 713, 729, 731, 735, 739, 753, 792, 793, 828, 882, 927, 934, 937, 943, 959, 972, 973, 995
Offset: 1

Views

Author

Sergio Falcon, Aug 07 2020

Keywords

Examples

			12 --> 1^4+2^4 = 17 --> 1^4+7^4 = 2402 --> 2^4+4^4+0^4+2^4 = 288 --> 2^4+8^4+8^4 = 8208.
		

Crossrefs

Programs

  • Maple
    V:= Vector(32805): V[8208]:= true:
    g:= proc(n) local L, t;
      add(t^4, t = convert(n,base,10))
    end proc:
    f:= proc(n) local x,S; global V;
      if n <= 32805 then
         if V[n] <> 0 then return V[n]
         else S:= [n]
         fi
      else S:= []
      fi;
      x:= n;
      do
        x:= g(x);
        if V[x] <> 0 then
           V[S]:= V[x];
           return V[x]
        elif member(x,S) then
           V[S]:= false;
           return false
        fi;
        if x <= 32805 then S:= [op(S), x] fi;
      od;
    end proc;
    select(f, [$1..10000]); # Robert Israel, Sep 03 2020
  • Mathematica
    okQ[n] := MemberQ[NestList[Total[IntegerDigits[#]^4]&, n, 30], 8208]; Select[Range[1000], okQ]