cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336896 Sum of the leftmost parts in all compositions of n into distinct parts.

Original entry on oeis.org

0, 1, 2, 6, 8, 15, 30, 42, 64, 99, 190, 242, 384, 533, 798, 1380, 1824, 2635, 3762, 5320, 7280, 12327, 15554, 22632, 30720, 43425, 57538, 80730, 122920, 159239, 220830, 299150, 406656, 542883, 733278, 962710, 1443600, 1820437, 2496638, 3280992, 4451120
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2020

Keywords

Comments

Also sum of the rightmost parts in all compositions of n into distinct parts.

Examples

			a(6) = 30 = 1 + 1 + 2 + 2 + 3 + 3 + 2 + 4 + 1 + 5 + 6: (1)23, (1)32, (2)13, (2)31, (3)12, (3)21, (2)4, (4)2, (1)5, (5)1, (6).
		

Crossrefs

Cf. A000225 (the same for all compositions), A008289, A032020, A032153.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, n*b(n$2, -1)):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0,
         If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p + 1]]];
    a[n_] := If[n == 0, 0, n*b[n, n, -1]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)

Formula

a(n) = n * Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} (k-1)! * A008289(n,k).
a(n) = n * A032153(n).