cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336908 Decimal expansion of Sum_{p prime} (p^2 + p - 1)/(p^2 *(p - 1)^2).

Original entry on oeis.org

1, 6, 9, 5, 9, 7, 4, 2, 4, 3, 7, 5, 7, 3, 6, 4, 9, 1, 7, 2, 7, 5, 0, 7, 7, 2, 2, 5, 5, 4, 6, 1, 3, 4, 1, 6, 0, 6, 2, 5, 1, 0, 9, 9, 5, 3, 0, 1, 8, 6, 1, 1, 0, 8, 5, 2, 8, 3, 7, 7, 6, 4, 7, 2, 8, 9, 6, 7, 7, 9, 7, 1, 4, 2, 6, 6, 8, 7, 7, 7, 7, 8, 8, 1, 4, 7, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 07 2020

Keywords

Comments

The asymptotic variance of Omega(k) - omega(k) (A046660).
The asymptotic mean of Omega(k) - omega(k) is Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141).

Examples

			1.695974243757364917275077225546134160625109953018611...
		

Crossrefs

Programs

  • Mathematica
    m = 100; RealDigits[PrimeZetaP[2] + NSum[n * PrimeZetaP[n], {n, 3, Infinity}, WorkingPrecision -> 2*m, NSumTerms -> 3*m], 10, m][[1]]
  • PARI
    sumeulerrat((p^2 + p - 1)/(p^2 *(p - 1)^2)) \\ Hugo Pfoertner, Aug 08 2020

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} d(k)^2 - ((1/m) * Sum_{k=1..m} d(k))^2, where d(k) = Omega(k) - omega(k) = A001222(k) - A001221(k) = A046660(k).
Equals P(2) + Sum_{k>=3} k*P(k), where P is the prime zeta function.
Equals A086242 -A085548 +A136141 . - R. J. Mathar, Aug 19 2022