cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336928 a(n) = A329697(sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 3, 0, 2, 1, 2, 3, 3, 1, 2, 2, 2, 0, 4, 1, 3, 1, 4, 3, 2, 2, 3, 3, 1, 2, 3, 3, 2, 1, 3, 4, 4, 2, 4, 3, 2, 2, 2, 1, 3, 2, 3, 3, 1, 2, 5, 3, 2, 1, 4, 1, 2, 2, 4, 3, 4, 3, 3, 1, 3, 1, 4, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 3, 0, 2, 2, 4, 4, 5, 3, 5, 2, 3, 2, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2020

Keywords

Crossrefs

Programs

Formula

Additive with a(p^e) = A329697(sigma(p^e)) = A329697(1+ p + p^2 + ... + p^e).
a(n) = A329697(A000203(n)).

A336927 Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(sigma(i)) = A335880(sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 5, 5, 2, 3, 3, 2, 2, 6, 5, 7, 8, 9, 1, 5, 2, 4, 6, 9, 8, 3, 4, 5, 1, 10, 2, 7, 2, 10, 7, 4, 3, 11, 9, 2, 5, 9, 7, 5, 2, 6, 12, 13, 5, 13, 7, 4, 5, 4, 8, 11, 4, 9, 6, 2, 5, 14, 9, 5, 15, 10, 2, 5, 5, 16, 11, 12, 6, 7, 2, 9, 8, 13, 12, 10, 9, 3, 7, 7, 4, 11, 11, 12, 3, 9, 1, 5, 4, 10, 13, 17, 7, 18, 19, 7, 5, 12, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A335880(A000203(n)), or equally, of the ordered pair [A336928(n), A336929(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
    Aux335880(n) = [A329697(n),A331410(n)];
    v336927 = rgs_transform(vector(up_to, n, Aux335880(sigma(n))));
    A336927(n) = v336927[n];
Showing 1-2 of 2 results.