A336937 The 2-adic valuation of sigma(n), the sum of divisors of n.
0, 0, 2, 0, 1, 2, 3, 0, 0, 1, 2, 2, 1, 3, 3, 0, 1, 0, 2, 1, 5, 2, 3, 2, 0, 1, 3, 3, 1, 3, 5, 0, 4, 1, 4, 0, 1, 2, 3, 1, 1, 5, 2, 2, 1, 3, 4, 2, 0, 0, 3, 1, 1, 3, 3, 3, 4, 1, 2, 3, 1, 5, 3, 0, 2, 4, 2, 1, 5, 4, 3, 0, 1, 1, 2, 2, 5, 3, 4, 1, 0, 1, 2, 5, 2, 2, 3, 2, 1, 1, 4, 3, 7, 4, 3, 2, 1, 0, 2, 0, 1, 3, 3, 1, 6
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
a[n_] := IntegerExponent[DivisorSigma[1, n], 2]; Array[a, 100] (* Amiram Eldar, Jul 04 2022 *)
-
PARI
A336937(n) = valuation(sigma(n),2);
-
PARI
A007814(n) = valuation(n,2); A336937(n) = { my(f=factor(n)); sum(i=1,#f~,(f[i,1]%2) * (f[i,2]%2) * (A007814(1+f[i,1])+A007814(1+f[i,2])-1)); };
-
Python
from sympy import divisor_sigma def A336937(n): return (~(m:=int(divisor_sigma(n))) & m-1).bit_length() # Chai Wah Wu, Jul 01 2022
Comments