A336941 Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.
1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0
Keywords
Examples
The a(2) = 8 chains: 12/1 12/2/1 12/3/1 12/4/1 12/6/1 12/4/2/1 12/6/2/1 12/6/3/1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..25
Crossrefs
A022915 is the maximal case.
A336571 is the case with distinct prime multiplicities.
A000005 counts divisors.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.
Programs
-
Mathematica
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]]; Table[chns[chern[n]],{n,0,3}]
-
PARI
a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020
Extensions
Terms a(8) and beyond from Andrew Howroyd, Aug 30 2020