cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336976 Expansion of Product_{k>=1} 1/(1 - x^k * (1 + k*x)).

Original entry on oeis.org

1, 1, 3, 7, 15, 32, 65, 131, 260, 501, 965, 1825, 3419, 6326, 11652, 21230, 38405, 69015, 123334, 218980, 386809, 679757, 1189360, 2071761, 3594325, 6211826, 10698409, 18363038, 31420994, 53605525, 91198970, 154746133, 261929303, 442310873, 745264674, 1253081340, 2102754561
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 36; CoefficientList[Series[Product[1/(1 - x^k*(1 + k*x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(1+k*x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (1+k/d*x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 + k/d * x)^d / d).
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=2} 1/(1 - 1/phi^k*(1 + k/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 06 2021