cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336980 Expansion of Product_{k>=1} (1 + x^k * (1 + k*x)).

Original entry on oeis.org

1, 1, 2, 4, 8, 13, 22, 39, 65, 104, 160, 263, 413, 646, 975, 1479, 2198, 3354, 5017, 7389, 10770, 15721, 22668, 32663, 47200, 67761, 96389, 135977, 191431, 268805, 376211, 523692, 730301, 1014029, 1401553, 1925074, 2638522, 3608182, 4924194, 6694070, 9088239, 12323707, 16668255
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 42; CoefficientList[Series[Product[1 + x^k*(1 + k*x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k*(1+k*x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)*(1+k/d*x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) * (1 + k/d * x)^d / d).