A336981 a(n) = (Sum_{k=0..n-1} (4290*k + 367)*3136^(n-1-k)*C(2*k, k)*T_k(14, 1)*T_k(17, 16)) / (n*C(2*n-1, n-1)), where T_k(b, c) denotes the coefficient of x^k in the expansion of (x^2 + b*x + c)^k.
367, 561274, 465761738, 347992898596, 253672374192058, 184472558346073676, 134741252587315803972, 99021561483595207492616, 73215620625604449084882202, 54432892306811842643034599356, 40662211372552333974451185020716, 30499994580401713594837984852435832
Offset: 1
Keywords
Examples
a(1) = 367 since C(0,0) = T_0(14,1) = T_0(17,16) = 1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..60
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
Programs
-
Maple
T := (k, b, c) -> coeff((x^2 + b*x + c)^k, x, k): a := n -> add((4290*k + 367)*3136^(n - 1 - k)*binomial(2*k, k)*T(k, 14, 1)*T(k, 17, 16), k = 0..n-1) / (n*binomial(2*n-1, n-1)): seq(a(n), n=1..14); # Peter Luschny, Aug 10 2020
-
Mathematica
T[b_,c_,0] = 1; T[b_,c_,1] = b; T[b_,c_,n_] := T[b,c,n] = (b(2n-1)T[b,c,n-1] - (b^2-4c)(n-1)T[b,c,n-2])/n; a[n_] := a[n] = Sum[(4290k+367)*3136^(n-1-k)*Binomial[2k,k]*T[14,1,k]*T[17,16,k],{k,0,n-1}]/(n*Binomial[2n-1,n-1]); Table[a[n], {n,1,10}]
Comments