A336982
a(n) = (Sum_{k=0..n-1}(540*k + 137)*3136^(n-1-k)*C(2*k, k)*T_k(2, 81)*T_k(14, 81))/ (2*n*C(2*n, n)), where T_k(b, c) denotes the coefficient of x^k in the expansion of (x^2 + b*x + c)^k.
Original entry on oeis.org
19481, 15834677, 11228057204, 8565432196217, 6307725016636484, 4757142559658418068, 3551514651027481311824, 2677076362952455673170913, 2013177974581354357341976964, 1521087748999864267161031319444, 1149516234275305699460970109062608
Offset: 2
a(2) = 19481 since (Sum_{k=0,1}(540*k+137)*3136^(1-k)*C(2k,k)*T_k(2,81)*T_k(14,81))/(2*2*C(4,2)) = (137*3136 + (540 + 137)*C(2,1)*T_1(2,81)*T_1(14,81))/(4*6) = (137*3136 + 677*2*2*14)/24 = 19481.
-
T := (k, b, c) -> coeff((x^2 + b*x + c)^k, x, k);
a := n -> add((540*k + 137)*3136^(n-1-k)*binomial(2*k,k)*T(k,2,81)*T(k,14,81), k = 0..n-1) / (2*n*binomial(2*n,n)):
seq(a(n), n=1..14); # Peter Luschny, Aug 10 2020
-
T[b_,c_,0]=1; T[b_,c_,1]=b;
T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n;
a[n_]:=a[n]=Sum[(540k+137)*3136^(n-1-k)*Binomial[2k,k]*T[2,81,k]*T[14,81,k],{k,0,n-1}]/(2n*Binomial[2n,n]);
Table[a[n],{n,2,12}]
A337247
a(n) = (Sum_{k=0..n-1} (-1)^k * (4k+1) * 160^(n-1-k) * C(2k,k) * Sum_{j=0..k} C(k,j) * C(k+2j,2j) * C(2j,j) * (-20)^(k-j)) / (n * C(2n,n)).
Original entry on oeis.org
25, 809, 23020, 730325, 27867142, 1117643720, 42658771456, 1558395721085, 57260792702050, 2179584653311070, 84835851591609400, 3292250198848240760, 126379831667243976400, 4841030410501144484000, 186842197443136622824960, 7269291788529191112814925, 283472902036823148786161530
Offset: 2
a(2) = (160 - (4 + 1)*C(2,1)*(-20 + C(3,2)*C(2,1)))/(2*C(4,2)) = 300/12 = 25.
- Zhi-Wei Sun, Table of n, a(n) for n = 2..100
- Zhi-Wei Sun, Two curious series for 1/Pi, Question 369569 at MathOverflow, August 19-20, 2020.
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
- Zhi-Wei Sun, Some new series for 1/Pi motivated by congruences, arXiv:2009.04379 [math.NT], 2020.
-
a[n_]:=a[n]=Sum[(4k+1)(-1)^k*160^(n-1-k)*Binomial[2k,k]*Sum[Binomial[k,j]Binomial[k+2j,2j]Binomial[2j,j](-20)^(k-j),{j,0,k}],{k,0,n-1}]/(n*Binomial[2n,n])
Table[a[n],{n,2,18}]
A337332
a(n) = Sum_{k=0..n}C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-8)^(n-k).
Original entry on oeis.org
1, -12, 228, -3504, 44580, -298032, 1407504, -275772096, 21324125988, -966349948080, 32198201397648, -831808446595776, 16275197594916624, -210881419152530112, 1110165241205298240, -28746364298042321664, 4877709692143697517348, -323151109677783574203312, 13976671241536620108719376
Offset: 0
a(1) = C(1,0)*C(1,0)*C(0,0)*C(2,1)*(-8) + C(1,1)*C(2,1)*C(2,1)*C(0,0) = -16 + 4 = -12.
- Zhi-Wei Sun, Table of n, a(n) for n = 0..100
- Zhi-Wei Sun, An explicit solution to the congruence x^2 == 14*(3/p)-(p/3)-12 (mod p)?, Question 369963 at MathOverflow, August 23, 2020.
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
- Zhi-Wei Sun, Some new series for 1/Pi motivated by congruences, arXiv:2009.04379 [math.NT], 2020.
-
a[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]Binomial[2k,k]Binomial[2(n-k),n-k](-8)^(n-k),{k,0,n}];
Table[a[n],{n,0,18}]
Showing 1-3 of 3 results.
Comments