A336981
a(n) = (Sum_{k=0..n-1} (4290*k + 367)*3136^(n-1-k)*C(2*k, k)*T_k(14, 1)*T_k(17, 16)) / (n*C(2*n-1, n-1)), where T_k(b, c) denotes the coefficient of x^k in the expansion of (x^2 + b*x + c)^k.
Original entry on oeis.org
367, 561274, 465761738, 347992898596, 253672374192058, 184472558346073676, 134741252587315803972, 99021561483595207492616, 73215620625604449084882202, 54432892306811842643034599356, 40662211372552333974451185020716, 30499994580401713594837984852435832
Offset: 1
a(1) = 367 since C(0,0) = T_0(14,1) = T_0(17,16) = 1.
-
T := (k, b, c) -> coeff((x^2 + b*x + c)^k, x, k):
a := n -> add((4290*k + 367)*3136^(n - 1 - k)*binomial(2*k, k)*T(k, 14, 1)*T(k, 17, 16), k = 0..n-1) / (n*binomial(2*n-1, n-1)):
seq(a(n), n=1..14); # Peter Luschny, Aug 10 2020
-
T[b_,c_,0] = 1; T[b_,c_,1] = b;
T[b_,c_,n_] := T[b,c,n] = (b(2n-1)T[b,c,n-1] - (b^2-4c)(n-1)T[b,c,n-2])/n;
a[n_] := a[n] = Sum[(4290k+367)*3136^(n-1-k)*Binomial[2k,k]*T[14,1,k]*T[17,16,k],{k,0,n-1}]/(n*Binomial[2n-1,n-1]);
Table[a[n], {n,1,10}]
A337247
a(n) = (Sum_{k=0..n-1} (-1)^k * (4k+1) * 160^(n-1-k) * C(2k,k) * Sum_{j=0..k} C(k,j) * C(k+2j,2j) * C(2j,j) * (-20)^(k-j)) / (n * C(2n,n)).
Original entry on oeis.org
25, 809, 23020, 730325, 27867142, 1117643720, 42658771456, 1558395721085, 57260792702050, 2179584653311070, 84835851591609400, 3292250198848240760, 126379831667243976400, 4841030410501144484000, 186842197443136622824960, 7269291788529191112814925, 283472902036823148786161530
Offset: 2
a(2) = (160 - (4 + 1)*C(2,1)*(-20 + C(3,2)*C(2,1)))/(2*C(4,2)) = 300/12 = 25.
- Zhi-Wei Sun, Table of n, a(n) for n = 2..100
- Zhi-Wei Sun, Two curious series for 1/Pi, Question 369569 at MathOverflow, August 19-20, 2020.
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
- Zhi-Wei Sun, Some new series for 1/Pi motivated by congruences, arXiv:2009.04379 [math.NT], 2020.
-
a[n_]:=a[n]=Sum[(4k+1)(-1)^k*160^(n-1-k)*Binomial[2k,k]*Sum[Binomial[k,j]Binomial[k+2j,2j]Binomial[2j,j](-20)^(k-j),{j,0,k}],{k,0,n-1}]/(n*Binomial[2n,n])
Table[a[n],{n,2,18}]
A337332
a(n) = Sum_{k=0..n}C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-8)^(n-k).
Original entry on oeis.org
1, -12, 228, -3504, 44580, -298032, 1407504, -275772096, 21324125988, -966349948080, 32198201397648, -831808446595776, 16275197594916624, -210881419152530112, 1110165241205298240, -28746364298042321664, 4877709692143697517348, -323151109677783574203312, 13976671241536620108719376
Offset: 0
a(1) = C(1,0)*C(1,0)*C(0,0)*C(2,1)*(-8) + C(1,1)*C(2,1)*C(2,1)*C(0,0) = -16 + 4 = -12.
- Zhi-Wei Sun, Table of n, a(n) for n = 0..100
- Zhi-Wei Sun, An explicit solution to the congruence x^2 == 14*(3/p)-(p/3)-12 (mod p)?, Question 369963 at MathOverflow, August 23, 2020.
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
- Zhi-Wei Sun, Some new series for 1/Pi motivated by congruences, arXiv:2009.04379 [math.NT], 2020.
-
a[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]Binomial[2k,k]Binomial[2(n-k),n-k](-8)^(n-k),{k,0,n}];
Table[a[n],{n,0,18}]
Showing 1-3 of 3 results.
Comments