A336982 a(n) = (Sum_{k=0..n-1}(540*k + 137)*3136^(n-1-k)*C(2*k, k)*T_k(2, 81)*T_k(14, 81))/ (2*n*C(2*n, n)), where T_k(b, c) denotes the coefficient of x^k in the expansion of (x^2 + b*x + c)^k.
19481, 15834677, 11228057204, 8565432196217, 6307725016636484, 4757142559658418068, 3551514651027481311824, 2677076362952455673170913, 2013177974581354357341976964, 1521087748999864267161031319444, 1149516234275305699460970109062608
Offset: 2
Keywords
Examples
a(2) = 19481 since (Sum_{k=0,1}(540*k+137)*3136^(1-k)*C(2k,k)*T_k(2,81)*T_k(14,81))/(2*2*C(4,2)) = (137*3136 + (540 + 137)*C(2,1)*T_1(2,81)*T_1(14,81))/(4*6) = (137*3136 + 677*2*2*14)/24 = 19481.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..60
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
Programs
-
Maple
T := (k, b, c) -> coeff((x^2 + b*x + c)^k, x, k); a := n -> add((540*k + 137)*3136^(n-1-k)*binomial(2*k,k)*T(k,2,81)*T(k,14,81), k = 0..n-1) / (2*n*binomial(2*n,n)): seq(a(n), n=1..14); # Peter Luschny, Aug 10 2020
-
Mathematica
T[b_,c_,0]=1; T[b_,c_,1]=b; T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n; a[n_]:=a[n]=Sum[(540k+137)*3136^(n-1-k)*Binomial[2k,k]*T[2,81,k]*T[14,81,k],{k,0,n-1}]/(2n*Binomial[2n,n]); Table[a[n],{n,2,12}]
Comments