A336985 Colombian numbers that are not Bogotá numbers.
3, 5, 7, 20, 31, 53, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 266, 277, 288, 299, 310, 323, 334, 345, 356, 367, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 1
Examples
7 is a term because there are not k < 7 such that 7 = k + sum of digits of k, and that are not q such that 7 = q * product of digits of q. 13 is not of the form q * product of digits of q for any q <= 13, so 13 is not a Bogotá number, but 13 = 11 + (1+1) is not Colombian, hence 13 is not a term. 42 is Colombian because there does not exist m < 42 such that 42 = m + sum of digits of m, but as 42 = 21 * (2*1) is a Bogota number, 42 is not a term.
Links
- Giovanni Resta, Self or Colombian number, Numbers Aplenty.
- Index to sequences related to Colombian or self numbers.
Crossrefs
Programs
-
Mathematica
m = 600; Intersection[Complement[Range[m], Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &]], Complement[Range[m], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]]] (* Amiram Eldar, Aug 26 2020 *)
-
PARI
lista(nn) = Vec(setintersect(setminus([1..nn], Set(vector(nn, k, k+sumdigits(k)))), setminus([1..nn], Set(vector(nn, k, k*vecprod(digits(k))))))); \\ Michel Marcus, Aug 26 2020
Comments