A336986 Numbers that are not Colombian and not Bogotá.
2, 6, 8, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 87, 89, 90, 91
Offset: 1
Examples
13 = 11 + (1+1) is not Colombian and 13 is not of the form q * product of digits of q for any q <= 13, so 13 is not a Bogotá number, hence 13 is a term. 39 = 33 + (3+3) is not Colombian but 39 = 13 * (1*3) is a Bogotá number, hence 39 is not a term. 42 = 21 * (2*1) is a Bogotá number but there does not exist k < 42 such that 42 = k + sum of digits of k, hence 42 is a Colombian number and 42 is not a term.
Links
- Giovanni Resta, Self or Colombian number, Numbers Aplenty.
- Index to sequences related to Colombian numbers.
Crossrefs
Programs
-
Mathematica
m = 100; Intersection[Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &], Complement[Range[m], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]]] (* Amiram Eldar, Aug 22 2020 *)
-
PARI
lista(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), setminus([1..nn], Set(vector(nn, k, k*vecprod(digits(k))))))); \\ Michel Marcus, Aug 23 2020
Comments