A336995 Numbers of the form x^3 + x^2*y + x*y^2 + y^3, where x and y are coprime positive integers.
4, 15, 40, 65, 85, 156, 175, 203, 259, 272, 369, 400, 477, 580, 585, 671, 715, 803, 820, 888, 935, 1105, 1111, 1157, 1261, 1417, 1464, 1484, 1625, 1695, 1820, 1885, 2055, 2080, 2336, 2380, 2465, 2533, 2595, 2669, 2848, 2873, 2955, 3060, 3145, 3439, 3485, 3492
Offset: 1
Examples
For x=1, y=1, x^3+x^2*y+x*y^2+y^3 = 4, so 4 is in the sequence. For x=1, y=2, x^3+x^2*y+x*y^2+y^3 = 15, so 15 is in the sequence. For x=2, y=2, x^3+x^2*y+x*y^2+y^3 = 32, but GCD(x,y)<>1, so 32 is not in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A336607.
Programs
-
Maple
N:= 10000: # for terms <= N S:= {}: for x from 1 while (x+1)*(x^2+1) < N do V:= select(`<=`,map(y -> (x+y)*(x^2+y^2), select(y -> igcd(x,y)=1, {seq(i,i=1..min(x,(N-x^3)/x^2))})),N); S:= S union V; od: sort(convert(S,list)); # Robert Israel, Sep 21 2020
-
Mathematica
max = 5000; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0; T0 = Table[x^3 + x^2 y + x y^2 + y^3, {x, 1, xm}, {y, x, xm}] // Flatten // Union // Select[#, # <= max &] &; T != T0, xm = 2 xm]; T (* T=A336607 *) (* Now, exclude a(n) such that a(n)=k^3*a(m) for m
=2 is an integer *) T2 = T; n = 1; While[n <= Length[T2], t1 = T2[[n]]; t2 = Last[T2]; max2 = 1 + (t2/t1)^(1/3); T2 = Complement[T2, Table[t1*k^3, {k, 2, max2}]]; n++; ]; T2 (* T2=A336995 *) -
PARI
upto(limit)={my(L=List(), b=sqrtnint(limit,3)); for(x=1, b, for(y=1, b, my(t=(x+y)*(x^2+y^2)); if(t<=limit && gcd(x,y)==1, listput(L,t)) )); Set(L)} upto(4000) \\ Andrew Howroyd, Aug 10 2020
Comments