cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336995 Numbers of the form x^3 + x^2*y + x*y^2 + y^3, where x and y are coprime positive integers.

Original entry on oeis.org

4, 15, 40, 65, 85, 156, 175, 203, 259, 272, 369, 400, 477, 580, 585, 671, 715, 803, 820, 888, 935, 1105, 1111, 1157, 1261, 1417, 1464, 1484, 1625, 1695, 1820, 1885, 2055, 2080, 2336, 2380, 2465, 2533, 2595, 2669, 2848, 2873, 2955, 3060, 3145, 3439, 3485, 3492
Offset: 1

Views

Author

César Eliud Lozada, Aug 10 2020

Keywords

Comments

Equivalently, numbers of the form (x+y)*(x^2 + y^2) where x and y are coprime positive integers.

Examples

			For x=1, y=1, x^3+x^2*y+x*y^2+y^3 = 4, so 4 is in the sequence.
For x=1, y=2, x^3+x^2*y+x*y^2+y^3 = 15, so 15 is in the sequence.
For x=2, y=2, x^3+x^2*y+x*y^2+y^3 = 32, but GCD(x,y)<>1, so 32 is not in the sequence.
		

Crossrefs

Subsequence of A336607.

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= {}:
    for x from 1 while (x+1)*(x^2+1) < N do
       V:= select(`<=`,map(y -> (x+y)*(x^2+y^2), select(y -> igcd(x,y)=1, {seq(i,i=1..min(x,(N-x^3)/x^2))})),N);
       S:= S union V;
    od:
    sort(convert(S,list)); # Robert Israel, Sep 21 2020
  • Mathematica
    max = 5000; T0 = {}; xm = Ceiling[Sqrt[max]];
    While[T = T0;
    T0 = Table[x^3 + x^2 y + x y^2 + y^3, {x, 1, xm}, {y, x, xm}] //
         Flatten // Union // Select[#, # <= max &] &; T != T0, xm = 2 xm];
    T (* T=A336607 *)
    (* Now, exclude a(n) such that a(n)=k^3*a(m) for m=2 is an integer *)
    T2 = T; n = 1;
    While[n <= Length[T2],
      t1 = T2[[n]]; t2 = Last[T2]; max2 = 1 + (t2/t1)^(1/3);
      T2 = Complement[T2, Table[t1*k^3, {k, 2, max2}]];
      n++;
      ];
    T2 (* T2=A336995 *)
  • PARI
    upto(limit)={my(L=List(), b=sqrtnint(limit,3)); for(x=1, b, for(y=1, b, my(t=(x+y)*(x^2+y^2)); if(t<=limit && gcd(x,y)==1, listput(L,t)) )); Set(L)}
    upto(4000) \\ Andrew Howroyd, Aug 10 2020