cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337085 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2020

Keywords

Examples

			Square array begins:
     1,    0,    0,    0,     0,     0,      0, ...
     2,    1,    1,    1,     1,     1,      1, ...
     5,    4,    6,   10,    18,    34,     66, ...
    16,   15,   27,   57,   135,   345,    927, ...
    65,   64,  124,  292,   796,  2404,   7804, ...
   326,  325,  645, 1585,  4605, 15145,  54645, ...
  1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
		

Crossrefs

Columns k=0..5 give A000522, A007526, A030297, A337001, A337002, A368719.
Main diagonal gives A256016.
Cf. A368724.

Programs

  • Mathematica
    T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)

Formula

T(0,k) = 0^k and T(n,k) = n^k + n * T(n-1,k) for n>0.
E.g.f. of column k: B_k(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials. - Seiichi Manyama, Jan 04 2024