cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337105 Number of strict chains of divisors from n! to 1.

Original entry on oeis.org

1, 1, 1, 3, 20, 132, 1888, 20128, 584000, 17102016, 553895936, 11616690176, 743337949184, 19467186157568, 999551845713920, 66437400489711616, 10253161206302064640, 388089999627661557760, 53727789519052432998400, 2325767421950553303285760, 365546030278816140131041280
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2020

Keywords

Examples

			The a(4) = 20 chains:
  24/1  24/2/1   24/4/2/1   24/8/4/2/1
        24/3/1   24/6/2/1   24/12/4/2/1
        24/4/1   24/6/3/1   24/12/6/2/1
        24/6/1   24/8/2/1   24/12/6/3/1
        24/8/1   24/8/4/1
        24/12/1  24/12/2/1
                 24/12/3/1
                 24/12/4/1
                 24/12/6/1
		

Crossrefs

A325617 is the maximal case.
A336941 is the version for superprimorials.
A337104 counts the case with distinct prime multiplicities.
A337071 is the case not necessarily ending with 1.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A253249 counts chains of divisors.
A336423 counts chains using A130091, with maximal case A336569.
A336942 counts chains using A130091 from A006939(n) to 1.

Programs

  • Maple
    b:= proc(n) option remember; 1 +
          add(b(d), d=numtheory[divisors](n) minus {n})
        end:
    a:= n-> ceil(b(n!)/2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 23 2020
  • Mathematica
    chnsc[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}];
    Table[Length[chnsc[n!]],{n,0,5}]

Formula

a(n) = A337071(n)/2 for n > 1.
a(n) = A074206(n!).

Extensions

a(19)-a(20) from Alois P. Heinz, Aug 22 2020