A337144 n is the a(n)-th positive integer which takes its number of steps to reach 1 in the Collatz (or 3x+1) problem.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 3, 4, 1, 1, 1, 2, 3, 2, 3, 1, 2, 2, 1, 3, 2, 4, 5, 1, 2, 2, 1, 2, 3, 2, 3, 4, 1, 1, 1, 2, 5, 3, 4, 1, 2, 3, 5, 1, 2, 4, 5, 1, 2
Offset: 1
Examples
a(13) = 2 because A006577(13) = A006577(12) = 9 != A006577(j) for j < 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
- Wikipedia, Collatz Conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Maple
collatz:= proc(n) option remember; `if`(n=1, 0, 1 + collatz(`if`(n::even, n/2, 3*n+1))) end: b:= proc() 0 end: a:= proc(n) option remember; local t; `if`(n=1, 0, a(n-1)); t:= collatz(n); b(t):= b(t)+1 end: seq(a(n), n=1..120);
-
Mathematica
collatz[n_] := collatz[n] = If[n == 1, 0, 1 + collatz[If[EvenQ[n], n/2, 3n+1]]]; b[_] = 0; a[n_] := a[n] = Module[{t}, If[n == 1, 0, a[n-1]]; t = collatz[n]; b[t] = b[t]+1]; Array[a, 120] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)