cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337144 n is the a(n)-th positive integer which takes its number of steps to reach 1 in the Collatz (or 3x+1) problem.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 3, 4, 1, 1, 1, 2, 3, 2, 3, 1, 2, 2, 1, 3, 2, 4, 5, 1, 2, 2, 1, 2, 3, 2, 3, 4, 1, 1, 1, 2, 5, 3, 4, 1, 2, 3, 5, 1, 2, 4, 5, 1, 2
Offset: 1

Views

Author

Alois P. Heinz, Jan 27 2021

Keywords

Examples

			a(13) = 2 because A006577(13) = A006577(12) = 9 != A006577(j) for j < 12.
		

Crossrefs

Programs

  • Maple
    collatz:= proc(n) option remember; `if`(n=1, 0,
       1 + collatz(`if`(n::even, n/2, 3*n+1)))
    end:
    b:= proc() 0 end:
    a:= proc(n) option remember; local t;
         `if`(n=1, 0, a(n-1));
          t:= collatz(n); b(t):= b(t)+1
        end:
    seq(a(n), n=1..120);
  • Mathematica
    collatz[n_] := collatz[n] = If[n == 1, 0,
       1 + collatz[If[EvenQ[n], n/2, 3n+1]]];
    b[_] = 0;
    a[n_] := a[n] = Module[{t},
       If[n == 1, 0, a[n-1]];
       t = collatz[n]; b[t] = b[t]+1];
    Array[a, 120] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)

Formula

Ordinal transform of A006577.
a(n) = |{ j in {1..n} : A006577(j) = A006577(n) }|.