A337161
Square array read by antidiagonals: T(n,k) is the number of simple labeled graphs G with vertex set V(G) = {v_1,...,v_n} along with a (coloring) function C:V(G) ->[k] such that v_i adjacent to v_j implies C(v_i) != C(v_j) and i=0, k>=0.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 10, 1, 0, 1, 5, 16, 35, 34, 1, 0, 1, 6, 25, 84, 195, 162, 1, 0, 1, 7, 36, 165, 644, 1635, 1090, 1, 0, 1, 8, 49, 286, 1605, 7620, 21187, 10370, 1, 0, 1, 9, 64, 455, 3366, 24389, 143748, 430467, 139522, 1, 0, 1, 10, 81, 680, 6279, 62310, 599685, 4412164, 13812483, 2654722, 1, 0, 1, 11, 100, 969, 10760, 136871, 1882054, 24413445, 223233540, 702219779, 71435266, 1, 0
Offset: 0
Examples
1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 1, 4, 9, 16, 25, 36, ... 0, 1, 10, 35, 84, 165, 286, ... 0, 1, 34, 195, 644, 1605, 3366, ... 0, 1, 162, 1635, 7620, 24389, 62310, ... 0, 1, 1090, 21187, 143748, 599685, 1882054, ...
References
- R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.
Programs
-
Mathematica
nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}]; Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid
Formula
Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.