cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337173 a(n) = Sum_{k=1..floor(n/2)} k^2 * (n-k)^2.

Original entry on oeis.org

0, 1, 4, 25, 52, 170, 280, 674, 984, 1979, 2684, 4795, 6188, 10164, 12656, 19524, 23664, 34773, 41268, 58333, 68068, 93214, 107272, 143078, 162760, 212303, 239148, 306047, 341852, 430312, 477152, 592008, 652256, 799017, 875364, 1060257, 1155732, 1385746, 1503736
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2021

Keywords

Examples

			a(6) = 1^2*5^2 + 2^2*4^2 + 3^2*3^2 = 25 + 64 + 81 = 170.
		

Crossrefs

Cf. A023855.

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + 16 x^2 + 12 x^3 + 23 x^4 + 5 x^5 + 4 x^6)/((1 - x)^6 (1 + x)^5), {x, 0, 80}], x]

Formula

G.f.: x^2*(1+3*x+16*x^2+12*x^3+23*x^4+5*x^5+4*x^6)/((1-x)^6*(1+x)^5).
a(n) = (2*n-1+(-1)^n)*(2*n+3+(-1)^n)*(16*n^3-n^2+10*n-4-(n^2+6*n+4)*(-1)^n)/3840.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11).