cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337203 Sum of the divisors of the primorial inflation of n.

Original entry on oeis.org

1, 3, 12, 7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, 31, 1741824, 195, 34836480, 360, 4368, 16128, 836075520, 124, 2821, 225792, 600, 2880, 25082265600, 1170, 802632499200, 63, 52416, 4064256, 22568, 403, 30500034969600, 81285120, 733824, 744, 1281001468723200, 9360, 56364064623820800, 34560, 3600, 1950842880
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Crossrefs

Row 0 of A337205, and of A337472.
Cf. also A323173.

Programs

  • Mathematica
    Array[DivisorSigma[1, Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Apply[Times, Prime@ Range@ PrimePi@ p]^e]] &, 46] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
    A337203(n) = sigma(A108951(n));
    
  • PARI
    A337203(n) = if(1==n,n, my(f=factor(n), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(!pid,return(s)); prevpid = pid; e += f[i,2]); (s));

Formula

a(n) = A000203(A108951(n)).