cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337209 Triangle read by rows T(n,k), (n >= 1, k > = 1), in which row n has length A000070(n-1) and every column gives A000203, the sum of divisors function.

Original entry on oeis.org

1, 3, 1, 4, 3, 1, 1, 7, 4, 3, 3, 1, 1, 1, 6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1, 12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 8, 12, 12, 6, 6, 6, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2020

Keywords

Comments

Conjecture: the sum of row n equals A066186(n), the sum of all parts of all partitions of n.

Examples

			Triangle begins:
   1;
   3,  1;
   4,  3, 1, 1;
   7,  4, 3, 3, 1, 1, 1;
   6,  7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1;
  12,  6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
   8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, ...
  ...
		

Crossrefs

Sum of divisors of terms of A176206.
Cf. A339278 (another version).

Programs

  • Mathematica
    A337209row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]],{m,0,n-1}]];Array[A337209row,10] (* Paolo Xausa, Sep 02 2023 *)
  • PARI
    f(n) = sum(k=0, n-1, numbpart(k));
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); );} \\ Michel Marcus, Jan 13 2021

Formula

T(n,k) = A000203(A176206(n,k)).