A337210 Irregular triangle read by rows in which row n has the least number of integers such that the sum of the square root of those integers is the best approximation to and less than the square root of n.
0, 1, 2, 3, 4, 1, 2, 6, 1, 3, 8, 2, 3, 1, 5, 1, 6, 12, 3, 4, 2, 6, 3, 5, 2, 7, 4, 5, 1, 11, 1, 12, 2, 10, 5, 6, 1, 14, 3, 10, 1, 3, 5, 6, 7, 1, 3, 6, 2, 15, 2, 3, 5, 7, 8, 1, 3, 8, 2, 4, 5, 4, 14, 8, 9, 6, 12, 2, 21, 1, 5, 8, 9, 10, 4, 18, 6, 15, 1, 5, 10, 10
Offset: 1
Examples
For row 1, just the sqrt(0) < sqrt(1); for row 2, just the sqrt(1) < sqrt(2); for row 3, just the sqrt(2) < sqrt(3); for row 4, just the sqrt(3) < sqrt(4); for row 5, just the sqrt(4) < sqrt(5); for row 6, sqrt(1) + sqrt(2) < sqrt(6); for row 7, just the sqrt(6) < sqrt(7); for row 8, sqrt(1) + sqrt(3) < sqrt(8); for row 9, just the sqrt(8) < sqrt(9); for row 10, sqrt(2) + sqrt(3) is the best approximation; for row 11, sqrt(1) + sqrt(5) < sqrt(11); for row 12, sqrt(1) + sqrt(6) < sqrt(12); for row 27, sqrt(1) + sqrt(3) + sqrt(6) is the best approximation; for row 63, 2*sqrt(3) + 2*sqrt(5) is the best approximation and appears as the integers {12, 20}; for row 107, sqrt(3) + sqrt(6) + sqrt(9) + sqrt(10) is the best approximation; for row 165, sqrt(1) + 2*sqrt(2) + 2*sqrt(3) + sqrt(5) + sqrt(11) is the best approximation and appears as the integers {1, 5, 8, 11, 12}; for row 218, sqrt(1) + sqrt(3) + sqrt(5) + sqrt(6) + sqrt(13) + sqrt(14) is the best approximation; etc. Triangle begins: 0; 1; 2; 3; 4; 1, 2; 6; 1, 3; 8; 2, 3; ...
Programs
-
Mathematica
y[x_] := Block[{lst = {x - 1}, min = Sqrt[x] - Sqrt[x - 1], rad = 1, sx = Sqrt[x]}, If[x > 5, lim = (sx - 1)^2; Do[diff = sx - (Sqrt[a] + Sqrt[b]); If[diff < min && diff > 0, min = diff; lst = {b, a}; rad = 2], {a, 2, lim}, {b, 1, a - 1}]]; If[x > 17, lim = (sx - Sum[Sqrt[z], {z, 2}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {c, b, a}; rad = 3], {a, 3, lim}, {b, 2, a - 1}, {c, 1, b - 1}]]; If[x > 37, lim = (sx - Sum[Sqrt[z], {z, 3}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {d, c, b, a}; rad = 4], {a, 4, lim}, {b, 3, a - 1}, {c, 2, b - 1}, {d, 1, c - 1}]]; If[x > 71, lim = (sx - Sum[Sqrt[z], {z, 4}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {e, d, c, b, a}; rad = 5], {a, 5, lim}, {b, 4, a - 1}, {c, 3, b - 1}, {d, 2, c - 1}, {e, 1, d - 1}]]; If[x > 117, lim = (sx - Sum[Sqrt[z], {z, 5}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {f, e, d, c, b, a}; rad = 6], {a, 6, lim}, {b, 5, a - 1}, {c, 4, b - 1}, {d, 3, c - 1}, {e, 2, d - 1}, {f, 1, e - 1}]]; If[x > 181, lim = (sx - Sum[Sqrt[z], {z, 6}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f] + Sqrt[g]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {g, f, e, d, c, b, a}; rad = 7], {a, 7, lim}, {b, 6, a - 1}, {c, 5, b - 1}, {d, 4, c - 1}, {e, 3, d - 1}, {f, 2, e - 1}, {g, 1, f - 1}]]; If[x > 265, lim = (sx - Sum[Sqrt[z], {z, 7}])^2; Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f] + Sqrt[g] + Sqrt[h]); If[diff < 0, Continue[]]; If[diff < min && diff > 0, min = diff; lst = {g, f, e, d, c, b, a}; rad = 8], {a, 8, lim}, {b, 7, a - 1}, {c, 6, b - 1}, {d, 5, c - 1}, {e, 4, d - 1}, {f, 3, e - 1}, {g, 2, f - 1}, {h, 1, g - 1}]]; lst]; Array[ y, 50] // Flatten
Formula
s = sum(sqrt(i)) for carefully chosen integers i less than n such that s < n yet is the best approximation to n.
Comments