A337219 a(n) is the least positive number k such that 3^n+k has n prime factors counted with multiplicity.
2, 1, 1, 3, 9, 7, 21, 63, 157, 471, 5, 15, 45, 135, 405, 1215, 3645, 10935, 32805, 98415, 295245, 885735, 2657205, 4409119, 2741597, 8224791, 16285765, 15302863, 45908589, 137725767, 77632981, 232898943, 161825917, 485477751, 1456433253, 3027122479, 1565174669
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..56
Crossrefs
Cf. A078843.
Programs
-
Mathematica
a[n_] := Module[{k = 1}, While[PrimeOmega[3^n + k] != n, k++]; k]; Array[a, 20] (* Amiram Eldar, Sep 18 2020 *)
-
PARI
a(n) = for(k=1, oo, if(bigomega(3^n+k)==n,return(k))); \\ Daniel Suteu, Oct 17 2020
Extensions
a(27)-a(37) from Daniel Suteu, Sep 14 2020
Definition edited by Zak Seidov, Oct 17 2020