cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337233 Composite integers m such that P(m)^2 == 1 (mod m), where P(m) is the m-th Pell number A000129(m). Also, odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 6 (mod m), where U(m)=A001109(m) and V(m)=A003499(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=6 and b=1, respectively.

Original entry on oeis.org

35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965, 7055, 7107, 7801, 8119
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a.
In general, one has U^2(p) == 1 and V(p)==a (mod p) whenever p is prime and b=1, -1.
The composite numbers satisfying these congruences may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.
For a=2 and b=-1, U(m) recovers A000129(m) (Pell numbers).
For a=6 and b=1, we have U(m)=A001109(m) and V(m)=A003499(m).
This sequence contains the odd composite integers for which the congruence A000129(m)^2 == 1 (mod m) holds.
This is also the sequence of odd composite numbers satisfying the congruences A001109(m)^2 == 1 and A003499(m)==a (mod m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337629 (a=6, b=-1), A337778 (a=4, b=1), A337779 (a=5, b=1).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 2]*Fibonacci[#, 2] - 1, #] &]
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 3] - 6, #] && Divisible[ChebyshevU[#-1, 3]*ChebyshevU[#-1, 3] - 1, #] &]