A337233 Composite integers m such that P(m)^2 == 1 (mod m), where P(m) is the m-th Pell number A000129(m). Also, odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 6 (mod m), where U(m)=A001109(m) and V(m)=A003499(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=6 and b=1, respectively.
35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965, 7055, 7107, 7801, 8119
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
Links
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
Crossrefs
Programs
-
Mathematica
Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 2]*Fibonacci[#, 2] - 1, #] &] Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 3] - 6, #] && Divisible[ChebyshevU[#-1, 3]*ChebyshevU[#-1, 3] - 1, #] &]
Comments