cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337235 Even composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

4, 8, 16, 68, 1208, 1424, 3056, 3824, 3928, 20912, 52174, 63716, 88708, 123148, 161872, 582224, 887566, 17083292, 18900412, 34648888, 39991684, 44884912, 51390736, 103170448, 107825236, 132238514, 279900272, 686071244, 769252508, 3251623346, 3358311986, 3535011826
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

Extensions

More terms from Amiram Eldar, Aug 21 2020
a(18)-a(32) from Daniel Suteu, Aug 29 2020