A337260 Compositions, sorted by increasing sum, decreasing length and increasing colexicographical order.
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 4, 1, 3, 2, 2, 3, 1, 4, 5
Offset: 1
Examples
The first 5 rows are: (1), (1, 1), (2), (1, 1, 1), (2, 1), (1, 2), (3), (1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1), (2, 2), (1, 3), (4), (1, 1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3), (4, 1), (3, 2), (2, 3), (1, 4), (5).
Crossrefs
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337243 (increasing length, then colexicographic).
Cf. A337259 (increasing length, then reverse colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).
Cf. A228351 (reverse colexicographic).
Programs
-
Maple
List := proc(n) local i, j, k, L: L := []: for i from 1 to n do for j from 1 to i do L := [op(L), op(combinat:-composition(i, i-j+1))]: od: od: for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od: L: end: