cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337283 a(n) = Sum_{i=0..n} i*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 0, 2, 5, 21, 101, 395, 1578, 6186, 23610, 89220, 333431, 1234343, 4536551, 16567157, 60172532, 217524468, 783111476, 2809027334, 10043413545, 35805255545, 127314522569, 451629771519, 1598650868766, 5647706073630, 19916305738030, 70117445671624, 246478579433947, 865201260035147
Offset: 0

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • Raphael Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2*(1-x^2)*(2-7*x+7*x^2+3*x^3+9*x^4+7*x^5+x^6+x^7+x^8)/((1-x)*(1+x+x^2-x^3)*(1-3*x-x^2-x^3))^2 )); // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *)
    a[n_]:= a[n]= Sum[j*T[j]^2, {j,0,n}];
    Table[a[n], {n,0,30}] (* G. C. Greubel, Nov 20 2021 *)
  • PARI
    concat([0,0], Vec(x^2*(1+x)*(2 -7*x +7*x^2 +3*x^3 +9*x^4 +7*x^5 +x^6 + x^7 +x^8)/((1-x)*(1 +x +x^2 -x^3)^2*(1 -3*x -x^2 -x^3)^2) + O(x^30))) \\ Colin Barker, Sep 19 2020
    
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337283(n): return sum( j*T(j)^2 for j in (0..n) )
    [A337283(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

From Colin Barker, Sep 13 2020: (Start)
G.f.: x^2*(1 + x)*(2 - 7*x + 7*x^2 + 3*x^3 + 9*x^4 + 7*x^5 + x^6 + x^7 + x^8) / ((1 - x)*(1 + x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)^2).
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3) - 35*a(n-4) + 3*a(n-5) + 48*a(n-7) - 11*a(n-8) + 7*a(n-9) - 14*a(n-10) + 2*a(n-11) - a(n-12) + a(n-13) for n>12.
(End)
a(n) = Sum_{j=0..n} j*A085697(j). - G. C. Greubel, Nov 20 2021