A337283 a(n) = Sum_{i=0..n} i*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.
0, 0, 2, 5, 21, 101, 395, 1578, 6186, 23610, 89220, 333431, 1234343, 4536551, 16567157, 60172532, 217524468, 783111476, 2809027334, 10043413545, 35805255545, 127314522569, 451629771519, 1598650868766, 5647706073630, 19916305738030, 70117445671624, 246478579433947, 865201260035147
Offset: 0
References
- Raphael Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-2,-2,-35,3,0,48,-11,7,-14,2,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2*(1-x^2)*(2-7*x+7*x^2+3*x^3+9*x^4+7*x^5+x^6+x^7+x^8)/((1-x)*(1+x+x^2-x^3)*(1-3*x-x^2-x^3))^2 )); // G. C. Greubel, Nov 20 2021 -
Mathematica
T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *) a[n_]:= a[n]= Sum[j*T[j]^2, {j,0,n}]; Table[a[n], {n,0,30}] (* G. C. Greubel, Nov 20 2021 *)
-
PARI
concat([0,0], Vec(x^2*(1+x)*(2 -7*x +7*x^2 +3*x^3 +9*x^4 +7*x^5 +x^6 + x^7 +x^8)/((1-x)*(1 +x +x^2 -x^3)^2*(1 -3*x -x^2 -x^3)^2) + O(x^30))) \\ Colin Barker, Sep 19 2020
-
Sage
@CachedFunction def T(n): # A000073 if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A337283(n): return sum( j*T(j)^2 for j in (0..n) ) [A337283(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021
Formula
From Colin Barker, Sep 13 2020: (Start)
G.f.: x^2*(1 + x)*(2 - 7*x + 7*x^2 + 3*x^3 + 9*x^4 + 7*x^5 + x^6 + x^7 + x^8) / ((1 - x)*(1 + x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)^2).
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3) - 35*a(n-4) + 3*a(n-5) + 48*a(n-7) - 11*a(n-8) + 7*a(n-9) - 14*a(n-10) + 2*a(n-11) - a(n-12) + a(n-13) for n>12.
(End)
a(n) = Sum_{j=0..n} j*A085697(j). - G. C. Greubel, Nov 20 2021