A337284 a(n) = Sum_{i=1..n} (i-1)*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.
0, 1, 3, 15, 79, 324, 1338, 5370, 20858, 79907, 301917, 1127753, 4175945, 15347222, 56045572, 203563012, 735880196, 2649245173, 9502874215, 33976624115, 121128306995, 430701953720, 1527852568478, 5408197139806, 19106052817630, 67376379676855, 237205619596129, 833831061604429, 2926954896983117
Offset: 1
Keywords
References
- R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1-2*x+2*x^2+12*x^3+8*x^5+2*x^6+4*x^7+3*x^8+2*x^9)/((1-x)*(1-2*x-3*x^2-6*x^3+x^4+x^6)^2) )); // G. C. Greubel, Nov 22 2021 -
Mathematica
T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; a[n_]:= a[n]= Sum[(j-1)*T[j]^2, {j,0,n}]; Table[a[n], {n,40}] (* G. C. Greubel, Nov 22 2021 *)
-
Sage
@CachedFunction def T(n): # A000073 if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A337284(n): return sum( (j-1)*T(j)^2 for j in (0..n) ) [A337284(n) for n in (1..40)] # G. C. Greubel, Nov 22 2021
Formula
Schumacher (on page 194) gives two explicit formulas for a(n) in terms of tribonacci numbers.
From Colin Barker, Sep 14 2020: (Start)
G.f.: x^2*(1 - 2*x + 2*x^2 + 12*x^3 + 8*x^5 + 2*x^6 + 4*x^7 + 3*x^8 + 2*x^9) / ((1 - x)*(1 + x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)^2)
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3) - 35*a(n-4) + 3*a(n-5) + 48*a(n-7) - 11*a(n-8) + 7*a(n-9) - 14*a(n-10) + 2*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)