cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337284 a(n) = Sum_{i=1..n} (i-1)*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 1, 3, 15, 79, 324, 1338, 5370, 20858, 79907, 301917, 1127753, 4175945, 15347222, 56045572, 203563012, 735880196, 2649245173, 9502874215, 33976624115, 121128306995, 430701953720, 1527852568478, 5408197139806, 19106052817630, 67376379676855, 237205619596129, 833831061604429, 2926954896983117
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1-2*x+2*x^2+12*x^3+8*x^5+2*x^6+4*x^7+3*x^8+2*x^9)/((1-x)*(1-2*x-3*x^2-6*x^3+x^4+x^6)^2) )); // G. C. Greubel, Nov 22 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]];
    a[n_]:= a[n]= Sum[(j-1)*T[j]^2, {j,0,n}];
    Table[a[n], {n,40}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337284(n): return sum( (j-1)*T(j)^2 for j in (0..n) )
    [A337284(n) for n in (1..40)] # G. C. Greubel, Nov 22 2021

Formula

Schumacher (on page 194) gives two explicit formulas for a(n) in terms of tribonacci numbers.
From Colin Barker, Sep 14 2020: (Start)
G.f.: x^2*(1 - 2*x + 2*x^2 + 12*x^3 + 8*x^5 + 2*x^6 + 4*x^7 + 3*x^8 + 2*x^9) / ((1 - x)*(1 + x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)^2)
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3) - 35*a(n-4) + 3*a(n-5) + 48*a(n-7) - 11*a(n-8) + 7*a(n-9) - 14*a(n-10) + 2*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
a(n) = A337283(n) - A107239(n). - G. C. Greubel, Nov 22 2021