A337286 a(n) = Sum_{i=0..n} i^2*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.
0, 0, 4, 13, 77, 477, 2241, 10522, 47386, 204202, 860302, 3546623, 14357567, 57286271, 225714755, 879795380, 3397426356, 13012405492, 49478890936, 186932228945, 702169068945, 2623863676449, 9758799153349, 36140284390030, 133317609306766, 490032600916766, 1795262239190210, 6557012850772931
Offset: 0
Keywords
References
- R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073.)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-9,-7,-56,96,108,252,-162,-114,-318,126,-16,136,-36,12,-21,3,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(4-15*x+22*x^2+83*x^3-90*x^4+11*x^5-128*x^6-207*x^7-224*x^8-233*x^9-162*x^10- 147*x^11-58*x^12-3*x^13-4*x^14-x^15)/((1-x)*(1+x+x^2-x^3)^3*(1-3*x-x^2-x^3)^3) )); // G. C. Greubel, Nov 22 2021 -
Mathematica
T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *) A337286[n_]:= Sum[j^2*T[j]^2, {j,0,n}]; Table[A337286[n], {n, 0, 50}] (* G. C. Greubel, Nov 22 2021 *)
-
Sage
@CachedFunction def T(n): # A000073 if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A337286(n): return sum( j^2*T(j)^2 for j in (0..n) ) [A337286(n) for n in (0..40)] # G. C. Greubel, Nov 22 2021
Formula
G.f.: x^2*(4 - 15*x + 22*x^2 + 83*x^3 - 90*x^4 + 11*x^5 - 128*x^6 - 207*x^7 - 224*x^8 - 233*x^9 - 162*x^10 - 147*x^11 - 58*x^12 - 3*x^13 - 4*x^14 - x^15)/((1-x)*(1 + x + x^2 - x^3)^3*(1 - 3*x - x^2 - x^3)^3). - G. C. Greubel, Nov 22 2021