A337291
a(n) = 3*binomial(4*n,n)/(4*n-1).
Original entry on oeis.org
4, 12, 60, 364, 2448, 17556, 131560, 1017900, 8069424, 65204656, 535070172, 4446927732, 37353738800, 316621743480, 2704784196240, 23263187479980, 201275443944432, 1750651680235920, 15298438066553776, 134252511729576240, 1182622941581590080
Offset: 1
A337350
a(n) is the number of lattice paths from (0,0) to (2n,2n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (2k,2k).
Original entry on oeis.org
1, 6, 34, 300, 3146, 36244, 443156, 5646040, 74137050, 996217860, 13633173180, 189347631720, 2662142601924, 37815138677960, 541882155414376, 7823955368697776, 113712609033955834, 1662288563798703204, 24424940365489658540, 360537080085493670856
Offset: 0
-
seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(4*k,2*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020
A337351
a(n) is the number of lattice paths from (0,0) to (3n,2n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (3k,2k).
Original entry on oeis.org
1, 10, 110, 1805, 34770, 731760, 16295600, 377438250, 8999246900, 219399101415, 5444124108810, 137040309706725, 3490834454580950, 89816746611096280, 2330761164942308080, 60932036847971297230, 1603218808449019802550, 42423276620326253035205
Offset: 0
-
seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(5*k,2*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020
A337352
a(n) is the number of lattice paths from (0,0) to (3n,3n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (3k,3k).
Original entry on oeis.org
1, 20, 524, 19660, 854380, 40304080, 2004409236, 103440770760, 5486614131756, 297239307415792, 16376472734974384, 914734188877259884, 51680064605716043636, 2948046519564292501232, 169560941932509940657016, 9822377923336683964009296, 572554753384166308597716396
Offset: 0
-
seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(6*k,3*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020
Showing 1-4 of 4 results.
Comments