A337329
Sum of the products of all pairs of divisors of n, (d1,d2), such that d1|n, d2|n, d1|d2 and d1
0, 2, 3, 14, 5, 41, 7, 70, 39, 87, 11, 245, 13, 149, 143, 310, 17, 455, 19, 539, 241, 321, 23, 1165, 155, 431, 390, 945, 29, 1521, 31, 1302, 509, 699, 467, 2639, 37, 857, 679, 2595, 41, 2687, 43, 2093, 1664, 1221, 47, 5053, 399, 2387, 1091, 2835, 53, 4370, 951, 4585, 1333, 1887, 59
Offset: 1
Keywords
Programs
-
Mathematica
Table[Sum[Sum[(i*k) (1 - Ceiling[k/i] + Floor[k/i])*(1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 80}]
Formula
a(n) = Sum_{d1|n, d2|n, d1|d2, d1
a(n) = n if and only if n is prime. - Bernard Schott, Aug 24 2020
Comments