cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337350 a(n) is the number of lattice paths from (0,0) to (2n,2n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (2k,2k).

Original entry on oeis.org

1, 6, 34, 300, 3146, 36244, 443156, 5646040, 74137050, 996217860, 13633173180, 189347631720, 2662142601924, 37815138677960, 541882155414376, 7823955368697776, 113712609033955834, 1662288563798703204, 24424940365489658540, 360537080085493670856
Offset: 0

Views

Author

Lucas A. Brown, Aug 24 2020

Keywords

Comments

The terms of this sequence may be computed via a determinant; see Lemma 10.7.2 of the Krattenthaler reference for details.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(4*k,2*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020

Formula

G.f.: 2 - 1 / (Sum_{n>=0} binomial(4*n,2*n) * x^n).
a(n) = binomial(4*n,2*n) * (8*n+1) / (8*n^2 + 2*n - 1) for n >= 1. For proof, see the Quy Nhan link.
D-finite with recurrence n*(2*n+1)*(8*n-7)*a(n) -2*(4*n-5)*(4*n-3)*(8*n+1)*a(n-1)=0. - R. J. Mathar, Jan 26 2025
From Lucas A. Brown, Jul 13 2025: (Start)
G.f.: 2 - sqrt(2-32*x) / sqrt(1+sqrt(1-16*x)).
a(n) = A000108(2*n) + 4 * A000108(2*n-1). (End)