A337350 a(n) is the number of lattice paths from (0,0) to (2n,2n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (2k,2k).
1, 6, 34, 300, 3146, 36244, 443156, 5646040, 74137050, 996217860, 13633173180, 189347631720, 2662142601924, 37815138677960, 541882155414376, 7823955368697776, 113712609033955834, 1662288563798703204, 24424940365489658540, 360537080085493670856
Offset: 0
Links
- Christian Krattenthaler, Lattice path enumeration, In: Handbook of Enumerative Combinatorics. Edited by Miklos Bona. CRC Press, 2015, pages 589-678.
- R. J. Mathar, The Eggenberger-Polya urn process: Probabilities of revisited ball ratios, vixra:2502.0097 (2025) Table 4
- Quy Nhan, A finite sum of binomial coefficients, MathStackExchange, 2025-06-21.
Programs
-
PARI
seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(4*k,2*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020
Formula
G.f.: 2 - 1 / (Sum_{n>=0} binomial(4*n,2*n) * x^n).
a(n) = binomial(4*n,2*n) * (8*n+1) / (8*n^2 + 2*n - 1) for n >= 1. For proof, see the Quy Nhan link.
D-finite with recurrence n*(2*n+1)*(8*n-7)*a(n) -2*(4*n-5)*(4*n-3)*(8*n+1)*a(n-1)=0. - R. J. Mathar, Jan 26 2025
From Lucas A. Brown, Jul 13 2025: (Start)
G.f.: 2 - sqrt(2-32*x) / sqrt(1+sqrt(1-16*x)).
Comments