A337352 a(n) is the number of lattice paths from (0,0) to (3n,3n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (3k,3k).
1, 20, 524, 19660, 854380, 40304080, 2004409236, 103440770760, 5486614131756, 297239307415792, 16376472734974384, 914734188877259884, 51680064605716043636, 2948046519564292501232, 169560941932509940657016, 9822377923336683964009296, 572554753384166308597716396
Offset: 0
Links
- Christian Krattenthaler, "Lattice path enumeration". In: Handbook of Enumerative Combinatorics. Edited by Miklos Bona. CRC Press, 2015, pages 589-678.
- R. J. Mathar, The Eggenberger-Polya urn process: Probabilities of revisited ball ratios, vixra:2502.0097 (2025) Table 4
Programs
-
PARI
seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(6*k,3*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020
Formula
G.f.: 2 - 1 / (Sum_{n>=0} binomial(6*n,3*n) * x^n).
Comments