cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337404 Decimal expansion of real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function and i=sqrt(-1).

Original entry on oeis.org

0, 0, 0, 0, 3, 6, 8, 1, 3, 6, 1, 0, 6, 3, 0, 8, 4, 4, 7, 5, 9, 1, 6, 3, 3, 8, 5, 6, 5, 3, 5, 1, 5, 3, 0, 0, 7, 5, 5, 6, 5, 6, 4, 1, 5, 7, 9, 8, 1, 3, 7, 0, 5, 0, 1, 4, 5, 2, 2, 3, 1, 7, 1, 1, 7, 8, 8, 1, 5, 1, 8, 9, 0, 8, 7, 9, 0, 8, 5, 9, 4, 5, 8, 4, 1, 1, 2, 2, 0, 2, 7, 8, 5, 5, 2, 9, 3, 9, 6, 1, 7, 9, 0, 2, 4, 1, 4, 3, 8
Offset: 0

Views

Author

Artur Jasinski, Aug 26 2020

Keywords

Comments

For the decimal expansion of the imaginary part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337365.
See also links in A332645.

Examples

			0.0000368136106308...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 0},RealDigits[N[1/192 (96 + 96 EulerGamma^4 - Pi^4 + 384 EulerGamma^2 StieltjesGamma[1] + 192 StieltjesGamma[1]^2 + 192 EulerGamma StieltjesGamma[2] + 64 StieltjesGamma[3]),105]][[1]]]

Formula

Re(Sum_{m>=1} 1/(1/2 + i*z(m))^n) where n is a positive integer is equal to Keiper's sigma(n)/2.
For n=4 this equals 1/2 + EulerGamma^4/2 - Pi^4/192 + 2*EulerGamma^2*StieltjesGamma(1) + StieltjesGamma(1)^2 + EulerGamma*StieltjesGamma(2) + StieltjesGamma(3)/3.
Showing 1-1 of 1 results.